Here, we investigated the anticancer effect of Rhus coriaria on three breast cancer cell lines. We demonstrated that Rhus coriaria ethanolic extract (RCE) inhibits the proliferation of these cell lines in a time- and concentration-dependent manner. RCE induced senescence and cell cycle arrest at G1 phase. These changes were concomitant with upregulation of p21, downregulation of cyclin D1, p27, PCNA, c-myc, phospho-RB and expression of senescence-associated β-galactosidase activity. No proliferative recovery was detected after RCE removal. Annexin V staining and PARP cleavage analysis revealed a minimal induction of apoptosis in MDA-MB-231 cells. Electron microscopy revealed the presence of autophagic vacuoles in RCE-treated cells. Interestingly, blocking autophagy by 3-methyladenine (3-MA) or chloroquine (CQ) reduced RCE-induced cell death and senescence. RCE was also found to activate p38 and ERK1/2 signaling pathways which coincided with induction of autophagy. Furthermore, we found that while both autophagy inhibitors abolished p38 phosphorylation, only CQ led to significant decrease in pERK1/2. Finally, RCE induced DNA damage and reduced mutant p53, two events that preceded autophagy. Our findings provide strong evidence that R. coriaria possesses strong anti-breast cancer activity through induction of senescence and autophagic cell death, making it a promising alternative or adjunct therapeutic candidate against breast cancer.
BackgroundIn the present study, we investigated the effect of Origanum majorana ethanolic extract on the survival of the highly proliferative and invasive triple-negative p53 mutant breast cancer cell line MDA-MB-231.ResultsWe found that O. majorana extract (OME) was able to inhibit the viability of the MDA-MB-231 cells in a time- and concentration-dependent manner. The effect of OME on cellular viability was further confirmed by the inhibition of colony growth. We showed, depending on the concentration used, that OME elicited different effects on the MDA-MB 231 cells. Concentrations of 150 and 300 µg/mL induced an accumulation of apoptotic–resistant population of cells arrested in mitotis and overexpressing the cyclin-dependent kinase inhibitor, p21 and the inhibitor of apoptosis, survivin. On the other hand, higher concentrations of OME (450 and 600 µg/mL) triggered a massive apoptosis through the extrinsic pathway, including the activation of tumor necrosis factor-α (TNF-α), caspase 8, caspase 3, and cleavage of PARP, downregulation of survivin as well as depletion of the mutant p53 in MDA-MB-231 cells. Furthermore, OME induced an upregulation of γ-H2AX, a marker of double strand DNA breaks and an overall histone H3 and H4 hyperacetylation.ConclusionOur findings provide strong evidence that O. majorana may be a promising chemopreventive and therapeutic candidate against cancer especially for highly invasive triple negative p53 mutant breast cancer; thus validating its complementary and alternative medicinal use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.