Diabetes is a disease that is chronic. Improper blood glucose control may cause serious complications in diabetic patients as heart and kidney disease, strokes, and blindness. Obesity is considered to be a massive risk factor of type 2 diabetes. Machine Learning has been applied to many medical health aspects. In this paper, two machine learning techniques were applied; Support Vector Machine (SVM) and Artificial Neural Network (ANN) to predict diabetes mellitus. The proposed techniques were applied on a real dataset from Al-Kasr Al-Aini Hospital in Giza, Egypt. The models were examined using four-fold cross validation. The results were conducted from two phases in which forecasting patients with fatty liver disease using Support Vector Machine in the first phase reached the highest accuracy of 95% when applied on 8 attributes. Then, Artificial Neural Network technique to predict diabetic patients were applied on the output of phase 1 and another different 8 attributes to predict non-diabetic, pre-diabetic and diabetic patients with accuracy of 86.6%.
Diabetes is a long-term disease. Inappropriate blood sugar level control in diabetic patients can lead to serious issues like kidney and heart diseases. Obesity is widely regarded as a major risk factor for type 2 diabetes. In this research, a model proposed to predict diabetic obese patients based on Expectation Maximization, PCA, and SMOTE Algorithms in the preprocessing and feature extraction phases, and using Fuzzy KNN classifier in the prediction phase. The model applied on real dataset and the accuracy of prediction results reflects the positive effect of the preprocessing techniques. The accuracy of the proposed model is 95.97% and outperforms other model applied on the same dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.