BackgroundThere is renewed interest in magnetic hyperthermia as a treatment modality for cancer, especially when it is combined with other more traditional therapeutic approaches, such as the co-delivery of anticancer drugs or photodynamic therapy.MethodsThe influence of bimagnetic nanoparticles (MNPs) combined with short external alternating magnetic field (AMF) exposure on the growth of subcutaneous mouse melanomas (B16-F10) was evaluated. Bimagnetic Fe/Fe3O4 core/shell nanoparticles were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected against rapid biocorrosion by organic dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin) units were attached to the dopamine-oligoethylene glycol ligands.ResultsThe magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified core-shell Fe/Fe3O4 nanoparticles caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. We also observed a decrease in tumor size after intravenous administration of the MNPs followed by three consecutive days of AMF exposure 24 hrs after the MNPs injection.ConclusionsThese results indicate that intratumoral administration of surface modified MNPs can attenuate mouse melanoma after AMF exposure. Moreover, we have found that after intravenous administration of micromolar concentrations, these MNPs are capable of causing an anti-tumor effect in a mouse melanoma model after only a short AMF exposure time. This is a clear improvement to state of the art.
Localized magnetic hyperthermia as a treatment modality for cancer has generated renewed interest, particularly if it can be targeted to the tumor site. We examined whether tumor-tropic neural progenitor cells (NPCs) could be utilized as cell delivery vehicles for achieving preferential accumulation of core/shell iron/iron oxide magnetic nanoparticles (MNPs) within a mouse model of melanoma. We developed aminosiloxane-porphyrin functionalized MNPs, evaluated cell viability and loading efficiency, and transplanted neural progenitor cells loaded with this cargo into mice with melanoma. NPCs were efficiently loaded with core/shell Fe/Fe 3 O 4 MNPs with minimal cytotoxicity; the MNPs accumulated as aggregates in the cytosol. The NPCs loaded with MNPs could travel to subcutaneous melanomas, and after A/C (alternating current) magnetic field (AMF) exposure, the targeted delivery of MNPs by the cells resulted in a measurable regression of the tumors. The tumor attenuation was significant (p<0.05) a short time (24 hours) after the last of three AMF exposures. Keywords nanotechnology; cell-based; targeted delivery; magnetic nanoparticles; magnetic hyperthermia; melanoma; neural progenitor cellsThe incidence and mortality rate of malignant melanoma continues to increase at an alarming rate worldwide.1 Disseminated melanoma is not curable using current clinical * Corresponding author: Deryl Troyer, Department of Anatomy and Physiology, 228 Coles Hall, Kansas State University, Manhattan, KS 66506, USA troyer@vet.ksu.edu,. ** Both of these authors contributed equally to this work. Supporting Information Available:Supplemental Figures S1 and S2 show a TEM image of MNPs and a photo of a hemacytometer grid with trypan blue-stained, MNP-loaded NPCs, respectively. The figures and accompanying legends are available This material is available free of charge via the Internet at http://pubs.acs.org. NIH Public AccessAuthor Manuscript ACS Nano. Author manuscript; available in PMC 2011 December 28. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript tools; traditional chemotherapy is ineffective due to inherent drug-resistant characteristics of the disease.2 , 3The pioneering studies of Gordon et al. demonstrated induced intracellular hyperthermia using dextran magnetite nanoparticles in a high frequency magnetic field (such as 500 kHz); the advantages of magnetic nanoparticles (MNPs), such as negligible or low toxicity, biocompatibility, injectability into the blood stream, and potential accumulation in the target tumor, make them prime candidates for hyperthermia applications.4 However, the specific absorption rates (SARs) of those early systems were low. It will be of great importance to achieve a high monodispersity of the magnetic nanoparticles, because only then can the A/ C-excitation be optimized to achieve very high specific absorption rates. Magnetic hyperthermia has recently garnered new interest as a cancer therapy because technological advances allow heat delivery to be more precisely contro...
Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.
IntroductionGlioma stem cells (GSCs) have the property of self-renewal and appear to be a driving force for the initiation and recurrence of gliomas. We recently found that the human tumorigenic LN-229 glioma cell line failed to form neurospheres in serum-free conditions and generated mostly small tumors in vivo, suggesting that either LN-229 GSCs are not active in these conditions or GSCs are absent in the LN-229 cell line.MethodsUsing self-renewal assay, soft-agar colony assay, cell proliferation assay, invasion assay, real time PCR analysis, ELISA and in vivo tumorigenic assay, we investigated the effects of interleukin (IL)-1β and transforming growth factor (TGF)-β on the development of GSCs from LN-229 cells.ResultsHere, we demonstrate that the combination of IL-1β and TGF-β can induce LN-229 cells to form neurospheres in serum-free medium. IL-1β/TGF-β-induced neurospheres display up-regulated expression of stemness factor genes (nestin, Bmi-1, Notch-2 and LIF), and increased invasiveness, drug resistance and tumor growth in vivo: hallmarks of GSCs. These results indicate that IL-1β and TGF-β cooperate to induce a GSC phenotype in the LN-229 cell line. Induction of nestin, LIF and Notch-2 by IL-1β/TGF-β can be reverted after cytokine withdrawal. Remarkably, however, up-regulated Bmi-1 levels remained unchanged after cytokine withdrawal; and the cytokine-withdrawn cells maintained strong clonogenicity, suggesting that Bmi-1 may play a crucial role in tumorigenesis.ConclusionsOur finding indicates that glioma cells without self-renewal capability in standard conditions could also contribute to glioma malignancy when cytokines, such as IL-1β and TGF-β, are present in the tumor environment. Targeting GSC-promoting cytokines that are highly expressed in glioblastomas may contribute to the development of more effective glioma therapies.
SummaryThe targeted delivery of therapeutics to the tumor site is highly desirable in cancer treatment, because it is capable of minimizing collateral damage. Herein, we report the synthesis of a nanoplatform, which is composed of a 15 ± 1 nm diameter core/shell Fe/Fe3O4 magnetic nanoparticles (MNPs) and the topoisomerase I blocker SN38 bound to the surface of the MNPs via a carboxylesterase cleavable linker. This nanoplatform demonstrated high heating ability (SAR = 522 ± 40 W/g) in an AC-magnetic field. For the purpose of targeted delivery, this nanoplatform was loaded into tumor-homing double-stable RAW264.7 cells (mouse monocyte/macrophage-like cells (Mo/Ma)), which have been engineered to express intracellular carboxylesterase (InCE) upon addition of doxycycline by a Tet-On Advanced system. The nanoplatform was taken up efficiently by these tumor-homing cells. They showed low toxicity even at high nanoplatform concentration. SN38 was released successfully by switching on the Tet-On Advanced system. We have demonstrated that this nanoplatform can be potentially used for thermochemotherapy. We will be able to achieve the following goals: (1) Specifically deliver the SN38 prodrug and magnetic nanoparticles to the cancer site as the payload of tumor-homing double-stable RAW264.7 cells; (2) Release of chemotherapeutic SN38 at the cancer site by means of the self-containing Tet-On Advanced system; (3) Provide localized magnetic hyperthermia to enhance the cancer treatment, both by killing cancer cells through magnetic heating and by activating the immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.