The severely degraded condition of many coral reefs worldwide calls for active interventions to rehabilitate their physical and biological structure and function, in addition to effective management of fisheries and no-take reserves. Rehabilitation efforts to stabilize reef substratum sufficiently to support coral growth have been limited in size. We documented a large coral reef rehabilitation in Indonesia aiming to restore ecosystem functions by increasing live coral cover on a reef severely damaged by blast fishing and coral mining. The project deployed small, modular, open structures to stabilize rubble and to support transplanted coral fragments. Between 2013 to 2015, approximately 11,000 structures covering 7,000 m 2 were deployed over 2 ha of a reef at a cost of US$174,000. Live coral cover on the structures increased from less than 10% initially to greater than 60% depending on depth, deployment date and location, and disturbances. The mean live coral cover in the rehabilitation area in October 2017 was higher than reported for reefs in many other areas in the Coral Triangle, including marine protected areas, but lower than in the no-take reference reef. At least 42 coral species were observed growing on the structures. Surprisingly, during the massive coral bleaching in other regions during the 2014-2016 El Niño-Southern Oscillation event, bleaching in the rehabilitation area was less than 5% cover despite warm water (≥30 ∘ C). This project demonstrates that coral rehabilitation is achievable over large scales where coral reefs have been severely damaged and are under continuous anthropogenic disturbances in warming waters.
Research on sociality in marine fishes is a vibrant field that is providing new insights into social evolution more generally. Here, we review the past two decades of research, identifying knowledge gaps and new directions. Two coral reef fishes, with social systems similar to other cooperative breeders, have emerged as models: the clown anemonefish Amphiprion percula and the emerald goby Paragobiodon xanthosoma. In these systems, non-breeders do not forgo their own reproduction to gain indirect genetic benefits. Rather, they do so because they stand to inherit the territory in the future and there are strong ecological and social constraints. The reasons why breeders tolerate non-breeders remain obscure, though it is plausibly a combination of weak kin selection, bet-hedging, and benefits mediated via mutualistic interactions with cnidarian hosts. The latter is particularly interesting, given the parallels with other social animals with mutualistic partners, such as acacia ants. Looking beyond the two model species, our attention is turning to species with more complex social organization, such as the damselfish Dascyllus aruanus. Here, variable group stability, conflict intensity, and reproductive skew provide opportunities to test theories of social evolution that have only been tested in a few taxa. New methods like social network analysis are enabling us to uncover more subtle effects of ecology on social interactions. More recently, comparative methods have yielded insights into the correlates of interspecific variation in sociality in the genera to which our model species belong. Phylogenetically controlled contrasts within the genus Gobiodon, have revealed the role of ecology, life history traits, and their interaction in sociality: smaller bodied species are more social than larger bodied species, which are only social on large corals. As climate change affects coral reefs, there is a pressing need to understand the many ways in which environmental disturbance influences these unique social systems. In sum, coral reef fishes have enabled us to test the robustness of current theories of social evolution in new taxa and environments, and they have generated new insights into social evolution that are applicable to a wider variety of taxa.
Asymmetric weapons are common in bilateral animals and, in some species, they can occur 23 on either the left or the right hand side of the body (lateralisation). Fiddler crabs (Uca spp, 24 Decapoda: Ocypodidae) have an enlarged claw that is used in male-male combat over 25 territories, and in courtship displays. Males can be either right or left-handed, and most 26 species have a 1:1 ratio. Past studies have found little effect of handedness on fighting 27 success, fight duration or other measures of combat. Here we show that, while handedness 28 per se. does not affect fighting, handedness-matching has a significant effect. In Uca 29 mjoebergi, fights between different-handed males were more likely to escalate to grappling, 30 suggesting that it is harder for the combatants to determine the winner. We suggest that the 31 positioning of the claws during fighting creates distinct forces that result in different 32 outcomes for same-versus different-handed fights. This can represent a strong selective 33 pressure in populations with an uneven handedness distribution where handedness minority 34 will often engage in different-handed fights. We discuss these results in light of the selective 35 forces that may act on handedness distribution in fiddler crabs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.