Targeted therapy with tyrosine kinase inhibitors (TKI) provides survival benefits to a majority of patients with non-small cell lung cancer (NSCLC). However, resistance to TKI almost always develops after treatment. Although genetic and epigenetic alterations have each been shown to drive resistance to TKI in cell line models, clinical evidence for their contribution in the acquisition of resistance remains limited. Here, we employed liquid biopsy for simultaneous analysis of genetic and epigenetic changes in 122 Vietnamese NSCLC patients undergoing TKI therapy and displaying acquired resistance. We detected multiple profiles of resistance mutations in 51 patients (41.8%). Of those, genetic alterations in EGFR, particularly EGFR amplification (n = 6), showed pronounced genome instability and genome-wide hypomethylation. Interestingly, the level of hypomethylation was associated with the duration of response to TKI treatment. We also detected hypermethylation in regulatory regions of Homeobox genes which are known to be involved in tumor differentiation. In contrast, such changes were not observed in cases with MET (n = 4) and HER2 (n = 4) amplification. Thus, our study showed that liquid biopsy could provide important insights into the heterogeneity of TKI resistance mechanisms in NSCLC patients, providing essential information for prediction of resistance and selection of subsequent treatment.
BackgroundFamilial adenomatous polyposis (FAP) is an autosomal dominant hereditary syndrome characterised by the development of hundreds to thousands of adenomatous colonic polyps during the second decade of life. FAP is caused by germ line mutations in the adenomatous polyposis coli (APC) gene located on chromosome 5q21–22.Case presentationA 36-year-old female was presented with 100–1000 adenomatous colonic polyps, typical of classic FAP symptoms. Genetic testing using massively parallel sequencing identified a 5-bp deletion (c.3927_3931delAAAGA) which causes frameshift (p.Glu1309Aspfs) and creates a premature stop codon, resulting in the replacement of the last 1535 amino acids of APC by five incorrect amino acids. Two of the proband’s four siblings also exhibited classic FAP symptoms and carried the same 5-bp heterozygous deletion in the APC gene. One of the proband’s two nephews also tested positive for this mutation but has not been examined by endoscopy due to his young age.ConclusionsWe reported here for the first time the use of massively parallel sequencing (MPS)-based genetic testing to identify a germline mutation within a three-generation Vietnamese family. This mutation is most likely responsible for the development of FAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.