Monitoring stress levels has become an important part of healthcare systems for physical and mental illnesses. However, current stress monitoring systems have failed to gather personal data in an everyday context. The current state of sensor technology allows us to develop systems measuring the physiological signals, which reflect stress by wearable devices. Therefore, we propose a stress monitoring system that provides an objective daily healthcare based on personal physiological signals: electrocardiogram (ECG), photoplethysmogram (PPG), and galvanic skin response (GSR). We use the wearable devices, Shimmer3 ECG, Shimmer3 GSR+ and Empatica E4 Wristband, to monitor stress ubiquitously. We perform controlled stress experiments on 17 participants and the system successfully detects stress with a 94.55% accuracy for 10-fold cross-validation and an 85.71% accuracy for subject-wise cross-validation. In everyday settings, the system assesses stress with an 81.82% accuracy. We also examine whether motion artifacts affect stress assessment.
Pregnancy is a unique time when many mothers gain awareness of their lifestyle and its impacts on the fetus. High-quality care during pregnancy is needed to identify possible complications early and ensure the mother’s and her unborn baby’s health and well-being. Different studies have thus far proposed maternal health monitoring systems. However, they are designed for a specific health problem or are limited to questionnaires and short-term data collection methods. Moreover, the requirements and challenges have not been evaluated in long-term studies. Maternal health necessitates a comprehensive framework enabling continuous monitoring of pregnant women. In this paper, we present an Internet-of-Things (IoT)-based system to provide ubiquitous maternal health monitoring during pregnancy and postpartum. The system consists of various data collectors to track the mother’s condition, including stress, sleep, and physical activity. We carried out the full system implementation and conducted a real human subject study on pregnant women in Southwestern Finland. We then evaluated the system’s feasibility, energy efficiency, and data reliability. Our results show that the implemented system is feasible in terms of system usage during nine months. We also indicate the smartwatch, used in our study, has acceptable energy efficiency in long-term monitoring and is able to collect reliable photoplethysmography data. Finally, we discuss the integration of the presented system with the current healthcare system.
Sleep is a composite of physiological and behavioral processes that undergo substantial changes during and after pregnancy. These changes might lead to sleep disorders and adverse pregnancy outcomes. Several studies have investigated this issue; however, they were restricted to subjective measurements or short-term actigraphy methods. This is insufficient for a longitudinal maternal sleep quality evaluation. A longitudinal study: 1) requires a long-term data collection approach to acquire data from everyday routines of mothers and 2) demands a sleep quality assessment method exploiting a large volume of multivariate data to assess sleep adaptations and overall sleep quality. In this paper, we present an Internet-of-Things-based long-term monitoring system to perform an objective sleep quality assessment. We conduct longitudinal monitoring, where 20 pregnant mothers are remotely monitored for six months of pregnancy and one month postpartum. To evaluate sleep quality adaptations, we: 1) extract several sleep attributes and study their variations during the monitoring and 2) propose a semi-supervised machine learning approach to create a personalized sleep model for each subject. The model provides an abnormality score, which allows an explicit representation of the sleep quality in a clinical routine, reflecting possible sleep quality degradation with respect to her own data. Sleep data of 13 participants (out of 20) are included in our analysis, as their data are adequate for the study, including 172.15±33.29 days of sleep data per person. Our fine-grained objective measurements indicate that the sleep duration and sleep efficiency are deteriorated in pregnancy and notably in postpartum. In comparison to the mid of the second trimester, the sleep model indicates the increase of sleep abnormality at the end of pregnancy (2.87 times) and postpartum (5.62 times). We also show that the model enables individualized and effective care for sleep disturbances during pregnancy, as compared to a baseline method.
Since stress contributes to a broad range of mental and physical health problems, the objective assessment of stress is essential for behavioral and physiological studies. Although several studies have evaluated stress levels in controlled settings, objective stress assessment in everyday settings is still largely under-explored due to challenges arising from confounding contextual factors and limited adherence for self-reports. In this paper, we explore the objective prediction of stress levels in everyday settings based on heart rate (HR) and heart rate variability (HRV) captured via low-cost and easy-to-wear photoplethysmography (PPG) sensors that are widely available on newer smart wearable devices. We present a layered system architecture for personalized stress monitoring that supports a tunable collection of data samples for labeling, and present a method for selecting informative samples from the stream of real-time data for labeling. We captured the stress levels of fourteen volunteers through self-reported questionnaires over periods of between 1-3 months, and explored binary stress detection based on HR and HRV using Machine Learning methods. We observe promising preliminary results given that the dataset is collected in the challenging environments of everyday settings. The binary stress detector is fairly accurate and can detect stressful vs non-stressful samples with a macro-F1 score of up to %76. Our study lays the groundwork for more sophisticated labeling strategies that generate context-aware, personalized models that will empower health professionals to provide personalized interventions.
Background The physical and emotional well-being of women is critical for healthy pregnancy and birth outcomes. The Two Happy Hearts intervention is a personalized mind-body program coached by community health workers that includes monitoring and reflecting on personal health, as well as practicing stress management strategies such as mindful breathing and movement. Objective The aims of this study are to (1) test the daily use of a wearable device to objectively measure physical and emotional well-being along with subjective assessments during pregnancy, and (2) explore the user’s engagement with the Two Happy Hearts intervention prototype, as well as understand their experiences with various intervention components. Methods A case study with a mixed design was used. We recruited a 29-year-old woman at 33 weeks of gestation with a singleton pregnancy. She had no medical complications or physical restrictions, and she was enrolled in the Medi-Cal public health insurance plan. The participant engaged in the Two Happy Hearts intervention prototype from her third trimester until delivery. The Oura smart ring was used to continuously monitor objective physical and emotional states, such as resting heart rate, resting heart rate variability, sleep, and physical activity. In addition, the participant self-reported her physical and emotional health using the Two Happy Hearts mobile app–based 24-hour recall surveys (sleep quality and level of physical activity) and ecological momentary assessment (positive and negative emotions), as well as the Perceived Stress Scale, Center for Epidemiologic Studies Depression Scale, and State-Trait Anxiety Inventory. Engagement with the Two Happy Hearts intervention was recorded via both the smart ring and phone app, and user experiences were collected via Research Electronic Data Capture satisfaction surveys. Objective data from the Oura ring and subjective data on physical and emotional health were described. Regression plots and Pearson correlations between the objective and subjective data were presented, and content analysis was performed for the qualitative data. Results Decreased resting heart rate was significantly correlated with increased heart rate variability (r=–0.92, P<.001). We found significant associations between self-reported responses and Oura ring measures: (1) positive emotions and heart rate variability (r=0.54, P<.001), (2) sleep quality and sleep score (r=0.52, P<.001), and (3) physical activity and step count (r=0.77, P<.001). In addition, deep sleep appeared to increase as light and rapid eye movement sleep decreased. The psychological measures of stress, depression, and anxiety appeared to decrease from baseline to post intervention. Furthermore, the participant had a high completion rate of the components of the Two Happy Hearts intervention prototype and shared several positive experiences, such as an increased self-efficacy and a normal delivery. Conclusions The Two Happy Hearts intervention prototype shows promise for potential use by underserved pregnant women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.