Background
The antibody response to SARS-CoV-2 mRNA vaccines in individuals with waning immunity generated by a previous SARS-CoV-2 infection, as well as the patterns of IgA and IgM responses in previously infected and in naïve individuals are still poorly understood.
Methods
We performed a serology study in a cohort of BTN162b2 mRNA vaccine recipients who were immunologically naïve (N, n = 50) or had been previously infected with SARS-CoV-2 (P.I., n = 51) during the first (n = 25) or second (n = 26) pandemic waves in Italy, respectively. We measured IgG, IgM and IgA antibodies against the SARS-CoV-2 Spike (S) and IgG against the nucleocapsid (N) proteins, as well as the neutralizing activity of sera collected before vaccination, after the first and second dose of vaccine.
Results
Most P.I. individuals from the first pandemic wave who showed declining antibody titres responded to the first vaccine dose with IgG-S and pseudovirus neutralization titres that were significantly higher than those observed in N individuals after the second vaccine dose. In all recipients, a single dose of vaccine was sufficient to induce a potent IgA response that was not associated with serum neutralization titres. We observed an unconventional pattern of IgM responses that were elicited in only half of immunologically naïve subjects even after the second vaccine dose.
Conclusions
The response to a single dose of vaccine in P.I. individuals is more potent than that observed in N individuals after two doses. Vaccine-induced IgA are not associated with serum neutralization.
We profiled antibody responses in a cohort of recipients of the BTN162b2 mRNA vaccine who were either immunologically naïve (n=50) or had been previously infected with SARS-CoV-2 (n=51). Of the previously infected, 25 and 26 were infected during the first and second pandemic waves in Italy, respectively; the majority of those from the first wave had corresponding waning immunity with low to undetectable levels of anti-S antibodies and low anti-N antibodies. We observed in recipients who had been previously infected that spike-specific IgG and pseudovirus neutralization titers were rapidly recalled by a single vaccine dose to higher levels than those in naïve recipients after the second vaccine dose, irrespective of waning immunity. In all recipients, a single vaccine dose was sufficient to induce a potent IgA response that was not associated with serum neutralization titers.
The vaccination campaign against SARS-CoV-2 relies on the world-wide availability of effective vaccines, with a potential need of 20 billion vaccine doses to fully vaccinate the world population. To reach this goal, the manufacturing and logistic processes should be affordable to all countries, irrespectively of economical and climatic conditions. Outer membrane vesicles (OMVs) are bacterial-derived vesicles that can be engineered to incorporate heterologous antigens. Given the inherent adjuvanticity, such modified OMVs can be used as vaccine to induce potent immune responses against the associated protein. Here we show that OMVs engineered to incorporate peptides derived from the receptor binding motif (RBM) of the spike protein from SARS-CoV-2 elicit an effective immune response in immunized mice, resulting in the production of neutralizing antibodies. The immunity induced by the vaccine is sufficient to protect K18-hACE2 transgenic mice from intranasal challenge with SARS-CoV-2, preventing both virus replication in the lungs and the pathology associated with virus infection. Furthermore, we show that OMVs can be effectively decorated with RBM peptides derived from a different genetic variant of SARS-CoV-2, inducing a similarly potent neutralization activity in vaccinated mice. Altogether, given the convenience associated with ease of engineering, production and distribution, our results demonstrate that OMV-based SARS-CoV-2 vaccines can be a crucial addition to the vaccines currently available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.