Introduction: The Better hEAring Rehabilitation (BEAR) project aims to provide a new clinical profiling tool, a test battery, for hearing loss characterization. Whereas the loss of sensitivity can be efficiently measured using pure-tone audiometry, the assessment of supra-threshold hearing deficits remains a challenge. In contrast to the classical 'attenuation-distortion' model, the proposed BEAR approach is based on the hypothesis that the hearing abilities of a given listener can be characterized along two dimensions reflecting independent types of perceptual deficits (distortions). A data-driven approach provided evidence for the existence of different auditory profiles with different degrees of distortions. Design: Eleven tests were included in a test battery, based on their clinical feasibility, time efficiency and related evidence from the literature. The tests were divided into six categories: audibility, speech perception, binaural processing abilities, loudness perception, spectro-temporal modulation sensitivity and spectro-temporal resolution. Study sample: Seventy-five listeners with symmetric, mild-to-severe sensorineural hearing loss were selected from a clinical population. Results: The analysis of the results showed interrelations among outcomes related to high-frequency processing and outcome measures related to low-frequency processing abilities. Conclusions: The results showed the ability of the tests to reveal differences among individuals and their potential use in clinical settings.
The Better hEAring Rehabilitation (BEAR) project aims to provide a new clinical profiling tool—a test battery—for hearing loss characterization. Although the loss of sensitivity can be efficiently measured using pure-tone audiometry, the assessment of supra-threshold hearing deficits remains a challenge. In contrast to the classical “attenuation-distortion” model, the proposed BEAR approach is based on the hypothesis that the hearing abilities of a given listener can be characterized along two dimensions, reflecting independent types of perceptual deficits (distortions). A data-driven approach provided evidence for the existence of different auditory profiles with different degrees of distortions. Ten tests were included in a test battery, based on their clinical feasibility, time efficiency, and related evidence from the literature. The tests were divided into six categories: audibility, speech perception, binaural processing abilities, loudness perception, spectro-temporal modulation sensitivity, and spectro-temporal resolution. Seventy-five listeners with symmetric, mild-to-severe sensorineural hearing loss were selected from a clinical population. The analysis of the results showed interrelations among outcomes related to high-frequency processing and outcome measures related to low-frequency processing abilities. The results showed the ability of the tests to reveal differences among individuals and their potential use in clinical settings.
Effective hearing aid (HA) rehabilitation requires personalization of the HA fitting parameters, but in current clinical practice only the gain prescription is typically individualized. To optimize the fitting process, advanced HA settings such as noise reduction and microphone directionality can also be tailored to individual hearing deficits. In two earlier studies, an auditory test battery and a data-driven approach that allow classifying hearing-impaired listeners into four auditory profiles were developed. Because these profiles were found to be characterized by markedly different hearing abilities, it was hypothesized that more tailored HA fittings would lead to better outcomes for such listeners. Here, we explored potential interactions between the four auditory profiles and HA outcome as assessed with three different measures (speech recognition, overall quality, and noise annoyance) and six HA processing strategies with various noise reduction, directionality, and compression settings. Using virtual acoustics, a realistic speech-in-noise environment was simulated. The stimuli were generated using a HA simulator and presented to 49 habitual HA users who had previously been profiled. The four auditory profiles differed clearly in terms of their mean aided speech reception thresholds, thereby implying different needs in terms of signal-to-noise ratio improvement. However, no clear interactions with the tested HA processing strategies were found. Overall, these findings suggest that the auditory profiles can capture some of the individual differences in HA processing needs and that further research is required to identify suitable HA solutions for them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.