Liquefaction evaluation on the sands induced by earthquake is of significance for engineers in seismic design. In this study, the random forest (RF) method is introduced and adopted to evaluate the seismic liquefaction potential of soils based on the shear wave velocity. The RF model was developed using the Andrus database as a training dataset comprising 225 sets of liquefaction performance and shear wave velocity measurements. Five training parameters are selected for RF model including seismic magnitude ( M w ), peak horizontal ground surface acceleration ( a max ), stress-corrected shear wave velocity of soil ( V s 1 ), sandy-layer buried depth (ds), and a new introduced parameter, stress ratio (k). In addition, the optimal hyperparameters for the random forest model are determined based on the minimum error rate for the out-of-bag dataset (ERROOB) such as the number of classification trees, maximum depth of trees, and maximum number of features. The established random forest model was validated using the Kayen database as testing dataset and compared with the Chinese code and the Andrus methods. The results indicated that the random forest method established based on the training dataset was credible. The random forest method gave a success rate for liquefied sites and even a total success rate for all cases higher than 80%, which is completely acceptable. By contrast, the Chinese code method and the Andrus methods gave a high success rate for liquefaction but very low for nonliquefaction which led to the increase of engineering cost. The developed RF model can provide references for engineers to evaluate liquefaction potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.