Existing chronic kidney disease (CKD) is among the most potent predictors of postoperative acute kidney injury (AKI). Here we quantified this risk in a multicenter, observational study of 9425 patients who survived to hospital discharge after major surgery. CKD was defined as a baseline estimated glomerular filtration rate <45 ml/min per 1.73 m(2). AKI was stratified according to the maximum simplified RIFLE classification at hospitalization and unresolved AKI defined as a persistent increase in serum creatinine of more than half above the baseline or the need for dialysis at discharge. A Cox proportional hazard model showed that patients with AKI-on-CKD during hospitalization had significantly worse long-term survival over a median follow-up of 4.8 years (hazard ratio, 1.7) [corrected] than patients with AKI but without CKD.The incidence of long-term dialysis was 22.4 and 0.17 per 100 person-years among patients with and without existing CKD, respectively. The adjusted hazard ratio for long-term dialysis in patients with AKI-on-CKD was 19.8 compared to patients who developed AKI without existing CKD. Furthermore, AKI-on-CKD but without kidney recovery at discharge had a worse outcome (hazard ratios of 4.6 and 213, respectively) for mortality and long-term dialysis as compared to patients without CKD or AKI. Thus, in a large cohort of postoperative patients who developed AKI, those with existing CKD were at higher risk for long-term mortality and dialysis after hospital discharge than those without. These outcomes were significantly worse in those with unresolved AKI at discharge.
IntroductionAbdominal surgery is probably associated with more likelihood to cause acute kidney injury (AKI). The aim of this study was to evaluate whether early or late start of renal replacement therapy (RRT) defined by simplified RIFLE (sRIFLE) classification in AKI patients after major abdominal surgery will affect outcome.MethodsA multicenter prospective observational study based on the NSARF (National Taiwan University Surgical ICU Associated Renal Failure) Study Group database. 98 patients (41 female, mean age 66.4 ± 13.9 years) who underwent acute RRT according to local indications for post-major abdominal surgery AKI between 1 January, 2002 and 31 December, 2005 were enrolled The demographic data, comorbid diseases, types of surgery and RRT, as well as the indications for RRT were documented. The patients were divided into early dialysis (sRIFLE-0 or Risk) and late dialysis (LD, sRIFLE -Injury or Failure) groups. Then we measured and recorded patients' outcome including in-hospital mortality and RRT wean-off until 30 June, 2006.ResultsThe in-hospital mortality was compared as endpoint. Fifty-seven patients (58.2%) died during hospitalization. LD (hazard ratio (HR) 1.846; P = 0.027), old age (HR 2.090; P = 0.010), cardiac failure (HR 4.620; P < 0.001), pre-RRT SOFA score (HR 1.152; P < 0.001) were independent indicators for in-hospital mortality.ConclusionsThe findings of this study support earlier initiation of acute RRT, and also underscore the importance of predicting prognoses of major abdominal surgical patients with AKI by using RIFLE classification.
IntroductionSepsis is the leading cause of acute kidney injury (AKI) in critical patients. The optimal timing of initiating renal replacement therapy (RRT) in septic AKI patients remains controversial. The objective of this study is to determine the impact of early or late initiation of RRT, as defined using the simplified RIFLE (risk, injury, failure, loss of kidney function, and end-stage renal failure) classification (sRIFLE), on hospital mortality among septic AKI patients.MethodsPatient with sepsis and AKI requiring RRT in surgical intensive care units were enrolled between January 2002 and October 2009. The patients were divided into early (sRIFLE-0 or -Risk) or late (sRIFLE-Injury or -Failure) initiation of RRT by sRIFLE criteria. Cox proportional hazard ratios for in hospital mortality were determined to assess the impact of timing of RRT.ResultsAmong the 370 patients, 192 (51.9%) underwent early RRT and 259 (70.0%) died during hospitalization. The mortality rate in early and late RRT groups were 70.8% and 69.7% respectively (P > 0.05). Early dialysis did not relate to hospital mortality by Cox proportional hazard model (P > 0.05). Patients with heart failure, male gender, higher admission creatinine, and operation were more likely to be in the late RRT group. Cox proportional hazard model, after adjustment with propensity score including all patients based on the probability of late RRT, showed early dialysis was not related to hospital mortality. Further model matched patients by 1:1 fashion according to each patient's propensity to late RRT showed no differences in hospital mortality according to head-to-head comparison of demographic data (P > 0.05).ConclusionsUse of sRIFLE classification as a marker poorly predicted the benefits of early or late RRT in the context of septic AKI. In the future, more physiologically meaningful markers with which to determine the optimal timing of RRT initiation should be identified.
Anemia is a common complication and contributes to increased morbidity and mortality in chronic kidney disease (CKD) patients. Whereas there has been a significant improvement of understanding the underlying mechanism of erythropoiesis, the treatment of renal anemia is still restricted to erythropoietin (EPO)-stimulating agents. The purpose of this article is to review the physiology of erythropoiesis, functional role of EPO and underlying molecular and cellular basis that regulate EPO production. Regulation of EPO production is at mRNA level. When anemia or hypoxia occurs, transcriptional factor, hypoxia-inducible factor (HIF), binds to EPO 5' hypoxic response element and EPO gene transcription increases. The renal EPO is mainly produced by pericytes. In CKD, pericytes transdifferentiate to myofibroblasts, and subsequently the ability of EPO production decreases, leading to renal anemia. Recent experimental and clinical studies show the promising efficacy of prolyl hydroxylase inhibitors in renal anemia through increasing EPO production by stabilizing HIF. Recent advances on epigenetics create a new field to study EPO gene expression at chromatin level. We will discuss the role of demethylating agent on restoring EPO expression, providing a novel approach to the treatment of renal anemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.