The infra-red spectrum of polycaprolactone has been recorded as a function of temperature in the range where melting and crystallisation of the polymer can occur. Examination of the carbonyl band of the spectra reveals a clear morphological sensitivity; heating the semi-crystalline polymer through the melting region results in a decrease in the intensity of the crystalline component of the carbonyl band. Accordingly, there was a subsequent increase in intensity of the crystalline carbonyl band on cooling. To enable comparison of these findings with a more conventional method of thermal analysis, similar experiments were conducted using a differential scanning calorimeter. The heated ATR accessory adopted for use in the FTIR spectrometer imposed significant limitations in the range of possible heating and cooling rates, but when these rates were carefully matched between FTIR and DSC, close correlation between the melting point and onset of re-crystallisation was observed. The results confirm that FTIR can be used as an alternative, if more laborious, way of investigating melting and re-crystallisation.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Poly(lactic acid) (PLA) is gaining increasing interest from the packaging industry as a biodegradable alternative to oil based polymers such as polypropylene (PP) and polyethylene terephthalate (PET). However, its' inherent brittle nature prevents widescale commercial use. Blending in order to improve the Young's modulus, yield stress and elongation to break, provides a possible alternative although many polymers have been found to be immiscible with PLA. In this study, high pressure carbon dioxide (CO2) was utilised during blending to encourage miscibility between two normally immiscible polymers: poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA). Blends were prepared by melt blending in the presence of carbon dioxide (CO2) and compared to solvent casting and melt blending with a single-screw extruder. CO2 assisted blends demonstrated a significant reduction in the size and number of PCL domains in a PLA matrix, and consequently improved the adhesion between phases at the microscale. The optimum melt blend composition for Young's modulus, yield stress and elongation to break was found to be 75% PLA and 25% PCL. Mechanical properties of PLA 2002D blends were further improved when prepared by CO2 assisted melt blending.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.