Inhibitors of calcineurin phosphatase activity (CNIs) such as cyclosporin A (CsA) are widely used to treat tissue transplant rejection and acute graft-versus-host disease (aGVHD), for which inhibition of NFAT-dependent gene expression is the mechanistic paradigm. We recently reported that CNIs inhibit TCR-proximal signaling by preventing calcineurin-mediated dephosphorylation of Lck S59 , an inhibitory modification, raising the possibility of another mechanism by which CNIs suppress immune responses. Here we utilized T cells from mice that express Lck S59A , which cannot accept a phosphate at residue 59, to initiate aGVHD. Although CsA inhibited NFAT-dependent gene upregulation in allo-aggressive T cells expressing either Lck WT or Lck S59A , it was ineffective in treating disease when the T cells expressed Lck S59A . Two important NFAT-independent T cell functions were found to be CsA-resistant in Lck S59A T cells: upregulation of the cytolytic protein perforin in tissue-infiltrating CD8 + T cells and antigenspecific T:DC (dendritic cell) adhesion and clustering in lymph nodes. These results demonstrate that effective treatment of aGVHD by CsA requires NFAT-independent inhibition of TCR signaling. Given that NFATs are widely expressed and off-target effects are a major limitation in CNI use, it is possible that targeting TCR-associated calcineurin directly may provide effective therapies with less toxicity.
TNF, produced largely by T and innate immune cells, is potently proinflammatory, as are cytokines such as IFN-γ and IL-17 produced by Th1 and Th17 cells, respectively. Here, we asked if TNF is upstream of Th skewing toward inflammatory phenotypes. Exposure of mouse CD4+ T cells to TNF and TGF-β generated Th17 cells that express low levels of IL-17 (ROR-γt+IL-17lo) and high levels of inflammatory markers independently of IL-6 and STAT3. This was mediated by the nondeath TNF receptor TNFR2, which also contributed to the generation of inflammatory Th1 cells. Single-cell RNA sequencing of central nervous system–infiltrating CD4+ T cells in mouse experimental autoimmune encephalomyelitis (EAE) found an inflammatory gene expression profile similar to cerebrospinal fluid–infiltrating CD4+ T cells from patients with multiple sclerosis. Notably, TNFR2-deficient CD4+ T cells produced fewer inflammatory mediators and were less pathogenic in EAE and colitis. IL-1β, a Th17-skewing cytokine, induced TNF and proinflammatory granulocyte-macrophage colony-stimulating factor (GM-CSF) in T cells, which was inhibited by disruption of TNFR2 signaling, demonstrating IL-1β can function indirectly via the production of TNF. Thus, TNF is not just an effector but also an initiator of inflammatory Th differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.