Basal-like breast cancer (BBC) is a subtype of breast cancer with poor prognosis [1][2][3] . Inherited mutations of BRCA1, a cancer susceptibility gene involved in double-strand DNA break (DSB) repair, lead to breast cancers that are nearly always of the BBC subtype [3][4][5] ; however, the precise molecular lesions and oncogenic consequences of BRCA1 dysfunction are poorly understood. Here we show that heterozygous inactivation of the tumor suppressor gene Pten leads to the formation of basal-like mammary tumors in mice, and that loss of PTEN expression is significantly associated with the BBC subtype in human sporadic and BRCA1-associated hereditary breast cancers. In addition, we identify frequent gross PTEN mutations, involving intragenic chromosome breaks, inversions, deletions and micro copy number aberrations, specifically in BRCA1-deficient tumors. These data provide an example of a specific and recurrent Correspondence should be addressed to R.P. (rep15@columbia.edu). 14 These authors contributed equally to this work. AUTHOR CONTRIBUTIONS L.H.S., S.K.G.-S., R.P. and Å.B conceived and designed the study; L.H.S., S.K.G.-S., J.S., G.J., K.H., S.K., J.V.-C., H.O., T.S., L.M., S.P.E., H.H., R.P. and Å.B. collected the samples; L.H.S., K.L., M.J., L.M., T.L., M.S., J.I. and H.H. performed and analyzed immunohistochemistry experiments; L.H.S. and C.P. designed and performed methylation analyses; L.H.S., C.P., M.M. and K.H. performed nucleotide sequencing experiments; L.H.S., J.S., G.J. and K.H. performed and analyzed aCGH experiments; L.H.S., M.M.P., S.S. and V.V.V.S.M. designed and performed FISH experiments; L.H.S., S.K.G.-S. and M.K. performed statistical analyses; R.P. and Å.B. supervised the study; and L.H.S. wrote the paper with assistance from R.P. and Å.B. and input from all coauthors.Note: Supplementary information is available on the Nature Genetics website. [1][2][3][4][5] . Of these, basal-like breast cancer (BBC) comprises 10-20% of all breast cancer and is one of the subtypes with the worst prognosis 2-5 . The term BBC was coined because these tumors express cytokeratin markers typical of basally oriented epithelial cells of the normal mammary gland, such as CK5, CK14 and CK17 (refs. 1,3,5 ). In addition to having characteristic cytokeratin expression, BBCs are highly proliferative, poorly differentiated and genomically unstable, and they pose clinical challenges because they rarely express the three most common therapeutically targeted 'Achilles' heels' of breast cancer: the estrogen receptor (ER), progesterone receptor and HER2 receptor (refs. 1,3,5,7 ).Intriguingly, breast tumors initiated by an inherited mutation of BRCA1 are nearly always basal-like 3,5 . BRCA1 dysfunction is thought to be tumorigenic primarily owing to defective BRCA1-dependent DSB repair, which precipitates an accumulation of secondary mutations 10 ; however, only general genomic patterns at relatively low resolution have been described (reviewed in ref. 5 ). Despite these advances in delineating BBC, the molecu...
Recurrent karyotypic abnormalities are a characteristic feature of cervical cancer (CC) cells, which may result in deregulated expression of important genes that contribute to tumor initiation and progression. To examine the role of gain of the long arm of chromosome 20 (20q), one of the common chromosomal gains in CC, we evaluated CC at various stages of progression using single nucleotide polymorphism (SNP) array, gene expression profiling, and fluorescence in situ hybridization (FISH) analyses. This analysis revealed copy number increase (CNI) of 20q in >50% of invasive CC and identified two focal amplicons at 20q11.2 and 20q13.13 in a subset of tumors. We further demonstrate that the acquisition of 20q gain occurs at an early stage in CC development and the high-grade squamous intraepithelial lesions (HSIL) that exhibit 20q CNI are associated (P = 0.05) with persistence or progression to invasive cancer. We identified a total of 26 overexpressed genes as consequence of 20q gain (N = 14), as targets of amplicon 1 (N = 9; two genes also commonly expressed with 20q gain) and amplicon 2 (N = 6; one gene also commonly expressed with 20q gain). These include a number of functionally important genes in cell cycle regulation (E2F1, TPX2, KIF3B, PIGT, and B4GALT5), nuclear function (CSEL1), viral replication (PSMA7 and LAMA5), methylation and chromatin remodeling (ASXL1, AHCY, and C20orf20), and transcription regulation (TCEA2). Our findings implicate a role for these genes in CC tumorigenesis, represent an important step toward the development of clinically significant biomarkers, and form a framework for testing as molecular therapeutic targets.
Background: Copy number gains and amplifications are characteristic feature of cervical cancer (CC) genomes for which the underlying mechanisms are unclear. These changes may possess oncogenic properties by deregulating tumorrelated genes. Gain of short arm of chromosome 5 (5p) is the most frequent karyotypic change in CC.
Cytogenetic abnormalities in B-cell posttransplant lymphoproliferative disorders (PTLD) have not been well characterized. We thus performed cytogenetic analysis of 28 cases of B-cell PTLD, 1 infectious mononucleosis (IM)-like lesion, 9 polymorphic PTLD, 17 monomorphic PTLD, and 1 classical Hodgkin lymphoma (HL), and correlated the karyotypic findings with the phenotype, Epstein-Barr virus infection status, and clinical outcome. Karyotypes of 19 cases of posttransplant florid follicular hyperplasia (FFH) were also analyzed. Informative karyotypes were obtained in 20 (71.4%) of 28 PTLDs and 18 (94.7%) of 19 FFHs. Clonal karyotypic abnormalities were detected in 13 (65%) of 20 PTLDs, including 9 (75%) of 12 monomorphic PTLDs, 2 (33.3%) of 6 polymorphic PTLDs, 1 IM-like lesion, and 1 HL, and 2 (11.1%) of 18 FFHs. Recurrent chromosome breaks at 1q11-21 (n = 6, including 1 FFH), 14q32 (n = 3, including 1 FFH), 16p13 (n = 3), 11q23-24 (n = 2), and 8q24 (c-MYC) (n = 2); gains of chromosome 7 (n = 4), X (n = 3), 2 (n = 3), 12 (n = 2); and loss of chromosome 22 (n = 2, including 1 IM-like lesion) were identified. The presence of cytogenetic abnormalities did not correlate with PTLD phenotype, Epstein-Barr virus infection, or clinical outcome. We describe novel karyotypic aberrations in PTLD and report clonal cytogenetic abnormalities in posttransplant FFH and an IM-like lesion for the first time. Our findings provide validation of the current World Health Organization classification of PTLD and also suggest incorporation of FFH as the earliest recognizable precursor of PTLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.