Human exploitation of wild‐living animals has been suggested to create a ‘landscape of fear’. A consequence could be that individuals surviving intensive harvesting, either as a result of behavioural plasticity and/or evolutionary change, exhibit increased average timidity. In the aquatic world, such effects are particularly well documented in passively operated fishing gears common to many commercial and recreational fisheries, such as angling, trapping or gill netting. We thus propose that an exploitation‐induced timidity syndrome should be a widespread pattern in fisheries. Importantly, we argue that the syndrome can be associated with several ecological and managerial consequences for social groups, populations, food webs, fisheries and assessment of stocks. We suggest research priorities to deepen our understanding of how exploited fish populations behaviourally respond to harvesting.
Acoustic positional telemetry systems (APTs) represent a novel approach to study the behaviour of free ranging aquatic animals in the wild at unprecedented detail. System manufactures promise remarkably high temporal and spatial resolution. However, the performance of APTs has rarely been rigorously tested at the level of entire ecosystems. Moreover, the effect of habitat structure on system performance has only been poorly documented. Two APTs were deployed to cover two small lakes and a series of standardized stationary tests were conducted to assess system performance. Furthermore, a number of tow tests were conducted to simulate moving fish. Based on these data, we quantified system performance in terms of data yield, accuracy and precision as a function of structural complexity in relation to vegetation. Mean data yield of the two systems was 40 % (Lake1) and 60 % (Lake2). Average system accuracy (acc) and precision (prec) were Lake1: acc = 3.1 m, prec = 1.1 m; Lake2: acc = 1.0 m, prec = 0.2 m. System performance was negatively affected by structural complexity, i.e., open water habitats yielded far better performance than structurally complex vegetated habitats. Post-processing greatly improved data quality, and sub-meter accuracy and precision were, on average, regularly achieved in Lake2 but remained the exception in the larger and structurally more complex Lake1. Moving transmitters were tracked well by both systems. Whereas overestimation of moved distance is inevitable for stationary transmitters due to accumulation of small tracking errors, moving transmitters can result in both over- and underestimation of distances depending on circumstances. Both deployed APTs were capable of providing high resolution positional data at the scale of entire lakes and are suitable systems to mine the reality of free ranging fish in their natural environment. This opens important opportunities to advance several fields of study such as movement ecology and animal social networks in the wild. It is recommended that thorough performance tests are conducted in any study utilizing APTs. The APTs tested here appear best suited for studies in structurally simple ecosystems or for studying pelagic species. In such situations, the data quality provided by the APTs is exceptionally high.
Studies of coordinated movement have found that, in many animal species, bolder individuals are more likely to initiate movement and shyer individuals to follow. Here, we show that in pairs of foraging stickleback fish, leadership is not merely a passive consequence of temperamental differences. Instead, the act of initiating a joint foraging trip out of cover itself brings about a change in the role that an individual plays throughout the subsequent trip, and success in recruiting a partner affects an individual's tendency to initiate the next trip. On each joint trip, whichever fish took the initiative in leading out of cover gains greater influence over its partner's behaviour, which persists even after several changes in position (i.e. termination attempts and re-joining). During any given trip, the initiator is less responsive to its partner's movements than during trips initiated by the partner. An individual's personality had an important effect on its response to failure to recruit a partner: while bold fish were unaffected by failures to initiate a joint trip, shy individuals were less likely to attempt another initiation after a failure. This difference provides a positive feedback mechanism that can partially stabilise social roles within the pair, but it is not strong enough to prevent occasional swaps, with individuals dynamically adjusting their responses to one another as they exchange roles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.