Recent interest has focused on whether South Korea may have undergone variable tectonic rotations since the Cretaceous. In an effort to contribute to the answer to this question, we have completed a palaeomagnetic reconnaissance study of Early Cretaceous sedimentary and igneous rocks from the Kyongsang basin in southeast Korea. Stepwise thermal demagnetization isolated well-defined characteristic magnetization in all samples. The palaeomagnetic directions reveal patterns of increasing amounts of clockwise (CW) rotation with increasing age for Aptian rock units. Palaeomagnetic declinations indicate clockwise vertical-axis rotations of R=34.3°±6.9°for the early Aptian rock unit, R=24.9°±10.6°for the middle Aptian, and R=−0.9°±11.8°for the late Aptian relative to eastern Asia. The new Cretaceous palaeomagnetic data from this study are consistent with the hypothesis that Korea and other major parts of eastern Asia occupied the same relative positions in terms of palaeolatitudes in the Cretaceous. An analysis of and comparison with previously reported palaeomagnetic data corroborates this hypothesis and suggests that much of Korea may have been connected to the North China Block since the early Palaeozoic. A plausible cause of the rotation is the westward subduction of the Kula plate underneath the Asian continent, which is inferred to have occurred during the Cretaceous according to several geological and tectonic analyses.
This study is a synthesis of paleomagnetic and mineral magnetic results for Sites 819 through 823 of Ocean Drilling Program (ODP) Leg 133, which lie on a transect from the outer edge of the Great Barrier Reef (GBR) down the continental slope to the bottom of the Queensland Trough. Because of viscous remagnetization and pervasive overprinting, few reversal boundaries can be identified in these extremely high-resolution Quaternary sequences. Some of the magnetic instability, and the differences in the quality of the paleomagnetic signal among sites, can be explained in terms of the dissolution of primary iron oxides in the high near-surface geochemical gradients.Well-defined changes in magnetic properties, notably susceptibility, reflect responses to glacio-eustatic sea-level fluctuations and changes in slope sedimentation processes resulting from formation of the GBR. Susceptibility can be used to correlate between adjacent holes at a given site to an accuracy of about 20 cm. Among-site correlation of susceptibility is also possible for certain parts of the sequences and permits (tentative) extension of the reversal chronology. The reversal boundaries that can be identified are generally compatible with the calcareous nannofossil biostratigraphy and demonstrate a high level of biostratigraphic consistency among sites. A revised chronology based on an optimum match with the susceptibility stratigraphy is presented.Throughout most of the sequences there is a strong inverse correlation both between magnetic susceptibility and calcium carbonate content, and between susceptibility and δ 18 O. In the upper, post-GBR, sections a more complicated type of magnetic response occurs during glacial maxima and subsequent transgressions, resulting in a positive correlation between susceptibility and 6 O.Prior to and during formation of the outer-reef barrier, the sediments have relatively uniform magnetic properties showing multidomain behavior and displaying cyclic variations in susceptibility related to sea-level change. The susceptibility oscillations are controlled more by carbonate dilution than by variation in terrigenous influx. Establishment of the outer reef between 1.01 and 0.76 Ma restricted the supply of sediment to the slope, causing a four-fold reduction in sedimentation rates and a transition from prograding to aggrading seismic geometries (see other chapters in this volume). The Brunhes/Matuyama boundary and the end of the transition period mark a change to lower and more subdued susceptibility oscillations with higher carbonate contents. The major change in magnetic properties comes at about 0.4 Ma in the aggrading sequence, which contains prominent sharp susceptibility peaks associated with glacial cycles, with distinctive single-domain magnetite and mixed single-domain/superparamagnetic characteristics. Bacterial magnetite has been found in the sediments, particularly where there are high susceptibility peaks, but its importance has not yet been assessed. A possible explanation for the characteristic ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.