Navigation depends on multiple neural systems that encode the moment-to-moment changes in an animal's direction and location in space.These include head direction (HD) cells representing the orientation of the head and grid cells that fire at multiple locations, forming a repeating hexagonal grid pattern. Computational models hypothesize that generation of the grid cell signal relies upon HD information that ascends to the hippocampal network via the anterior thalamic nuclei (ATN). We inactivated or lesioned the ATN and subsequently recorded single units in the entorhinal cortex and parasubiculum. ATN manipulation significantly disrupted grid and HD cell characteristics while sparing theta rhythmicity in these regions.These results indicate that the HD signal via the ATN is necessary for the generation and function of grid cell activity.
Summary Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal’s movements. These signals include grid cells, which fire at multiple locations forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz EEG oscillation that is modulated by the animals’ movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall HD cell characteristics, and abolished velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity. Velocity modulation of theta may be used as a speed signal to generate the repeating pattern of grid cells.
The relationship between chronological age (lifespan) and biological age (healthspan) varies amongst individuals. Understanding the normal trajectory and characteristic traits of aging mice throughout their lifespan is important for selecting the most reliable and reproducible measures to test hypotheses. The protocols herein describe assays used for aging studies at The Jackson Laboratory's Mouse Neurobehavioral Phenotyping Facility and include assessments of frailty, cognition, and sensory (hearing, vision, olfaction), motor, and fine motor function that can be used for assessing phenotypes in aged mice across their lifespan as well as provide guidance for setting up and validating these behavioral measures. Researchers aiming to study aging phenotypes require access to aged mice as a reference when initiating these types of studies in order to observe normal aging characteristics that cannot be observed in young adult mouse populations. © 2018 by John Wiley & Sons, Inc.
Head direction (HD) cells fire as a function of the animal’s directional heading and provide the animal with a sense of direction. In rodents, these neurons are located primarily within the limbic system, but small populations of HD cells are found in two extralimbic areas: the medial precentral cortex (PrCM) and dorsal striatum (DS). HD cell activity in these structures could be driven by output from the limbic HD circuit or generated intrinsically. We examined these possibilities by recording the activity of PrCM and DS neurons in control rats and in rats with anterodorsal thalamic nucleus (ADN) lesions, a manipulation that disrupts the limbic HD signal. HD cells in the PrCM and DS of control animals displayed characteristics similar to those of limbic HD cells, and these extralimbic HD signals were eliminated in animals with complete ADN lesions, suggesting that the PrCM and DS HD signals are conveyed from the limbic HD circuit. Angular head velocity cells recorded in the PrCM and DS were unaffected by ADN lesions. Next, we determined if the PrCM and DS convey necessary self-motion signals to the limbic HD circuit. Limbic HD cell activity recorded in the ADN remained intact following combined lesions of the PrCM and DS. Collectively, these experiments reveal a unidirectional functional relationship between the limbic HD circuit and the PrCM and DS; the limbic system generates the HD signal and transmits it to the PrCM and DS, but these extralimbic areas do not provide critical input or feedback to limbic HD cells. NEW & NOTEWORTHY Head direction (HD) cells have been extensively studied within the limbic system. The lesion and recording experiments reported here examined two relatively understudied populations of HD cells located outside of the canonical limbic HD circuit in the medial precentral cortex and dorsal striatum. We found that HD cell activity in these two extralimbic areas is driven by output from the limbic HD circuit, revealing that HD cell circuitry functionally extends beyond the limbic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.