With the development of edge devices and mobile devices, the authenticated fast access for the networks is necessary and important. To make the edge and mobile devices smart, fast, and for the better quality of service (QoS), fog computing is an efficient way. Fog computing is providing the way for resource provisioning, service providers, high response time, and the best solution for mobile network traffic. In this chapter, the proposed method is for handling the fog resource management using efficient offloading mechanism. Offloading is done based on machine learning prediction technology and also by using the KNN algorithm to identify the nearest fog nodes to offload. The proposed method minimizes the energy consumption, latency and improves the QoS for edge devices, IoT devices, and mobile devices.
Mobile device users are involved in social networking, gaming, learning, and even some office work, so the end users expect mobile devices with highresponse computing capacities, storage, and high battery power consumption. The data-intensive applications, such as text search, online gaming, and face recognition usage, have tremendously increased. With such high complex applications, there are many issues in mobile devices, namely, fast battery draining, limited power, low storage capacity, and increased energy consumption. The novelty of this work is to strike a balance between time and energy consumption of mobile devices while using data-intensive applications by finding the optimal offloading decisions. This paper proposes a novel efficient Data Size-Aware Offloading Model (DSAOM) for data-intensive applications and to predict the appropriate resource provider for dynamic resource allocation in mobile cloud computing. Based on the data size, the tasks are separated and gradually allocated to the appropriate resource providers for execution. The task is placed into the appropriate resource provider by considering the availability services in the fog nodes or the cloud. The tasks are split into smaller portions for execution in the neighbor fog nodes. To execute the task in the remote side, the offloading decision is made by using the min-cut algorithm by considering the monetary cost of the mobile device. This proposed system achieves low-latency time 13.2% and low response time 14.1% and minimizes 24% of the energy consumption over the existing model. Finally, according to experimental findings, this framework efficiently lowers energy use and improves performance for data-intensive demanding application activities, and the task offloading strategy is effective for intensive offloading requests.
The usages of mobile devices are drastically increasing every day with high end support to the users. The high end configurations mobile devices such as smart phones, laptops, tablets, etc., computations are complex in these devices. Computation intensive and data intensive are plays a vital role in the mobile devices. The main challenges in the mobile devices are handling the mobile applications in the devices with high computation and high storage. The above mentioned challenges can be overcome by using mobile cloud computing. The limitations while handling the mobile cloud computing is offloading decision making, which part of computation should offload and which should execute in the mobile side. The proposed work provides the solution to the limitations and challenges mentioned earlier by providing agent based offloading decision maker for mobile cloud. The decision maker should decide which computation part is executed in the mobile side and the cloud side. The evaluation shows the mobile applications having high complexity get benefited over other high applications. The proposed system achieves the better response time, low latency, cost-effective and minimizes the energy consumed by data-intensive and computational-intensive mobile applications.
With the development of edge devices and mobile devices, the authenticated fast access for the networks is necessary and important. To make the edge and mobile devices smart, fast, and for the better quality of service (QoS), fog computing is an efficient way. Fog computing is providing the way for resource provisioning, service providers, high response time, and the best solution for mobile network traffic. In this chapter, the proposed method is for handling the fog resource management using efficient offloading mechanism. Offloading is done based on machine learning prediction technology and also by using the KNN algorithm to identify the nearest fog nodes to offload. The proposed method minimizes the energy consumption, latency and improves the QoS for edge devices, IoT devices, and mobile devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.