Effects of climate warming on wild populations of organisms are expected to be greatest at higher latitudes, paralleling greater anticipated increases in temperature in these regions. Yet, these expectations assume that populations in different regions are equally susceptible to the effects of warming. This is unlikely to be the case. Here, we develop a series of predictive models for physiological thermal tolerances in ants based on current and future climates. We found that tropical ants have lower warming tolerances, a metric of susceptibility to climate warming, than temperate ants despite greater increases in temperature at higher latitudes. Using climatic, ecological and phylogenetic data, we refine our predictions of which ants (across all regions) were most susceptible to climate warming. We found that ants occupying warmer and more mesic forested habitats at lower elevations are the most physiologically susceptible to deleterious effects of climate warming. Phylogenetic history was also a strong indicator of physiological susceptibility. In short, we find that ants that live in the canopies of hot, tropical forest are the most at risk, globally, from climate warming. Unfortunately this is where many, perhaps most, ant and other species on Earth live.
Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long‐term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long‐lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes require experiments on decadal time scales. But decadal experiments by themselves may not be adequate because many of the slow processes have characteristic time scales much longer than experiments can be maintained. This article promotes a coordinated approach that combines long‐term, large‐scale global change experiments with process studies and modeling. Long‐term global change manipulative experiments, especially in high‐priority ecosystems such as tropical forests and high‐latitude regions, are essential to maximize information gain concerning future states of the earth system. The long‐term experiments should be conducted in tandem with complementary process studies, such as those using model ecosystems, species replacements, laboratory incubations, isotope tracers, and greenhouse facilities. Models are essential to assimilate data from long‐term experiments and process studies together with information from long‐term observations, surveys, and space‐for‐time studies along environmental and biological gradients. Future research programs with coordinated long‐term experiments, process studies, and modeling have the potential to be the most effective strategy to gain the best information on long‐term ecosystem dynamics in response to global change.
The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.