We study the multiple objective discrete optimization (MODO) problem and propose two-stage optimization problems as subproblems to be solved to obtain efficient solutions. The mathematical structure of the first level subproblem has similarities to both Tchebycheff type of approaches and a generalization of the lexicographic max-ordering problem that are applicable to multiple objective optimization. We present some results that enable us to develop an algorithm to solve the bicriteria discrete optimization problem for the entire efficient set. We also propose a modification of the algorithm that generates a sample of efficient solutions that satisfies a prespecified quality guarantee. We apply the algorithm to solve the bicriteria knapsack problem. Our computational results on this particular problem demonstrate that our algorithm performs significantly better than an equivalent Tchebycheff counterpart. Moreover, the computational behavior of the sampling version is quite promising.multiple objective optimization, efficient set, min-max optimization, bicriteria knapsack problem
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.