<p>Tracking multiple objects is a challenging problem for an automated system, with applications in many domains. Typically the system must be able to represent the posterior distribution of the state of the targets, using a recursive algorithm that takes information from noisy measurements. However, in many important cases the number of targets is also unknown, and has also to be estimated from data. The Probability Hypothesis Density (PHD) filter is an effective approach for this problem. The method uses a first-order moment approximation to develop a recursive algorithm for the optimal Bayesian filter. The PHD recursion can implemented in closed form in some restricted cases, and more generally using Sequential Monte Carlo (SMC) methods. The assumptions made in the PHD filter are appealing for computational reasons in real-time tracking implementations. These are only justifiable when the signal to noise ratio (SNR) of a single target is high enough that remediates the loss of information from the approximation. Although the original derivation of the PHD filter is based on functional expansions of belief-mass functions, it can also be developed by exploiting elementary constructions of Poisson processes. This thesis presents novel strategies for improving the Sequential Monte Carlo implementation of PHD filter using the point process approach. Firstly, we propose a post-processing state estimation step for the PHD filter, using Markov Chain Monte Carlo methods for mixture models. Secondly, we develop recursive Bayesian smoothing algorithms using the approximations of the filter backwards in time. The purpose of both strategies is to overcome the problems arising from the PHD filter assumptions. As a motivating example, we analyze the performance of the methods for the difficult problem of person tracking in crowded environments</p>
<p>Tracking multiple objects is a challenging problem for an automated system, with applications in many domains. Typically the system must be able to represent the posterior distribution of the state of the targets, using a recursive algorithm that takes information from noisy measurements. However, in many important cases the number of targets is also unknown, and has also to be estimated from data. The Probability Hypothesis Density (PHD) filter is an effective approach for this problem. The method uses a first-order moment approximation to develop a recursive algorithm for the optimal Bayesian filter. The PHD recursion can implemented in closed form in some restricted cases, and more generally using Sequential Monte Carlo (SMC) methods. The assumptions made in the PHD filter are appealing for computational reasons in real-time tracking implementations. These are only justifiable when the signal to noise ratio (SNR) of a single target is high enough that remediates the loss of information from the approximation. Although the original derivation of the PHD filter is based on functional expansions of belief-mass functions, it can also be developed by exploiting elementary constructions of Poisson processes. This thesis presents novel strategies for improving the Sequential Monte Carlo implementation of PHD filter using the point process approach. Firstly, we propose a post-processing state estimation step for the PHD filter, using Markov Chain Monte Carlo methods for mixture models. Secondly, we develop recursive Bayesian smoothing algorithms using the approximations of the filter backwards in time. The purpose of both strategies is to overcome the problems arising from the PHD filter assumptions. As a motivating example, we analyze the performance of the methods for the difficult problem of person tracking in crowded environments</p>
The effects of altitude, increased ambient temperature, and increased relative humidity on the board level forced convection typical of telecommunications products were systematically examined through numerical simulation and analytical techniques. Altitude was found to have the most significant impact on component temperature rise above inlet air temperature. Depending on the proportion of upstream-heating to self-heating for a given component, the component temperature rise above inlet air temperature was found to increase by 40% to 88% at 5000m when compared to the base line case at sea level. Inlet air temperature was found to translate linearly to component temperature increase. The second-order effects due to property changes with temperature were found to be less than 3% on the component temperature rise. The relative humidity was not found to significantly impact the component temperature rise at an inlet temperature of 25°C. However, the property changes at a 55°C inlet were more significant, and require further study. A temperature multiplier concept is introduced to aid practicing engineers in extrapolating data at standard conditions to the operating extremes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.