Background: Potato (Solanum tuberosum) is one of the most important sources of carbohydrates in human diet. Because of its high carbohydrate levels it recently has also received attention in biohydrogen production. To exploit the natural variation of potato with respect to resistance to major diseases, carbohydrate levels and composition, and capacity for biohydrogen production we analyzed tubers of native, improved, and genetically modified potatoes, and two other tuberous species for their glucose, fructose, sucrose, and starch content. Results: High-starch potato varieties were evaluated for their potential for Caldicellulosiruptor saccharolyticus-mediated biohydrogen production with Desirée and Rosita varieties delivering the highest biohydrogen amounts. Native line Vega1 and improved line Yagana were both immune to two isolates (A291, A287) of Phytophthora infestans. Conclusions: Our data demonstrate that native potato varieties might have great potential for further improving the multifaceted use of potato in worldwide food and biohydrogen production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.