In situ formed acetal changes the course of Brønsted acid-catalyzed reaction of ortho-alkynylbenzaldehydes with arylalkynes altogether. By utilizing this, an efficient domino approach for the regioselective synthesis of substituted benzo[a]fluorenes has been developed under mild reaction conditions. In situ formed acetal facilitates the intermolecular heteroalkyne metathesis and subsequent trans to cis isomerization of a double bond to effect the intramolecular annulation.
Activation of the aci-form of nitromethane using Lewis acids for the attack of carbon nucleophiles was studied. 1,3-Dicarbonyl compounds in the presence of catalytic amounts of AuCl(3) or Cu(OTf)(2) in nitromethane solvent could be converted into methylene-bridged bis-1,3-dicarbonyl compounds.
An interesting domino reaction for the synthesis of substituted naphthyl ketones has been developed using readily accessible starting materials. This domino reaction proceeds via in situ incorporation of an acetal followed by intramolecular heteroalkyne metathesis/annulation in an ortho-alkynylacetophenone derivative. A deuterium incorporation experiment has been carried out to understand the mechanism.
Substituted arylethanols can be coupled by using a readily available Ru catalyst in a fully deoxygenative manner to produce hydrocarbon chains in one step. Control experiments indicate that the first deoxygenation occurs through an aldol condensation, whereas the second occurs through a base-induced net decarbonylation. This double deoxygenation enables further development in the use of alcohols as versatile and green alkylating reagents, as well as in other fields, such as deoxygenation and upgrading of overfunctionalized biomass to produce hydrocarbons.
Iridium(III)-pyridone complexes are commonly found to react in a cooperative and redox-neutral manner with dihydrogen and alcohols. In this work, the reactivity preferences of Ir I -pyridone complexes were investigated under a variety of conditions. We have found that, in contrast to Ir III -pyridones, Ir Ipyridone complexes display a strong preference to react noncooperatively. With a new chelating 2-hydroxy-8-diphenylphos- [a]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.