The development of expansion injection molding as new technology for producing thin plastic parts has raised questions about polymer melt behavior in the process of rapid high pressure compression and expansion. To investigate those phenomena, the new in-line injection molding machine mounted measurement system has been developed. Measuring nozzle equipped with hydraulically driven closing bolts and contact fast response pressure and infrared temperature sensors enabled us to measure the compression and expansion of polymer melts at different starting conditions. Results presented for high impact polystyrene and polyamide show that polymer melt temperature rise is linearly dependent on compression pressure as well as it is dependent on compression speed. Comparable effect of temperature fall has been recorded during the polymer expansion, resulting in no noticeable loss of dissipation energy during this reversible process. Measurements have been compared with modified 2-domain Tait equation of state. Curve fitting analysis to manufacturer's material data show that measurements fit well with the model, even at very high compression speeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.