Specific small interfering RNAs (siRNAs) designed to silence different oncogenic pathways can be used for cancer therapy. However, non-modified naked siRNAs have short half-lives in blood serum and encounter difficulties in crossing biological membranes due to their negative charge. These obstacles can be overcome by using siRNAs complexed with bolaamphiphiles, consisting of two positively charged head groups that flank an internal hydrophobic chain. Bolaamphiphiles have relatively low toxicities, long persistence in the blood stream, and most importantly, in aqueous conditions can form poly-cationic micelles thus, becoming amenable to association with siRNAs. Herein, two different bolaamphiphiles with acetylcholine head groups attached to an alkyl chain in two distinct configurations are compared for their abilities to complex with siRNAs and deliver them into cells inducing gene silencing. Our explicit solvent molecular dynamics (MD) simulations showed that bolaamphiphiles associate with siRNAs due to electrostatic, hydrogen bonding, and hydrophobic interactions. These in silico studies are supported by various in vitro and in cell culture experimental techniques as well as by some in vivo studies. Results demonstrate that depending on the application, the extent of siRNA chemical protection, delivery efficiency, and further intracellular release can be varied by simply changing the type of bolaamphiphile used.
Penicillium expansum is one of the main postharvest pathogens of apples in Israel. Heating apple fruit inoculated with P. expansum for 96 h at 38°C completely inhibited decay development. Fruit held for 24 h at 42°C or 12 h at 46°C had significantly reduced decay after an additional 14 days incubation at 20°C, compared with unheated inoculated control fruit. Mycelial growth and percentage spore germination in vitro were inversely proportional to length of time of exposure to various temperatures. The ET50 for spore germination was 42, 34 and 20 h at 38, 42 and 46°C, respectively, while the ET50 for mycelial growth was 48, 44 and 36 h at those temperatures. When Penicillium spores were incubated on crude extract prepared from the peel of apple fruits held 4 days at 38°C, germ tube elongation was significantly reduced, while the walls of the tubes were thicker, compared with germ tubes from spores incubated on crude extract prepared from peel of non‐heated fruit. The evidence presented here supports the hypothesis that the effect of heating on the decay of apples caused by P. expansum is not only the result of direct inhibition of fungal germination and growth by high temperature, but is also partly due to the formation of an inhibitory substance in the heated peel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.