An expanded GGGGCC repeat in C9orf72 is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. A fundamental question is whether toxicity is driven by the repeat RNA itself and/or by dipeptide repeat proteins generated by repeat-associated, non-ATG translation. To address this question we developed in vitro and in vivo models to dissect repeat RNA and dipeptide repeat protein toxicity. Expression of pure repeats in Drosophila caused adult-onset neurodegeneration attributable to poly-(glycine-arginine) proteins. Thus expanded repeats promoted neurodegeneration through neurotoxic proteins. Expression of individual dipeptide repeat proteins with a non-GGGGCC RNA sequence showed both poly-(glycinearginine) and poly-(proline-arginine) proteins caused neurodegeneration. These findings are consistent with a dual toxicity mechanism, whereby both arginine-rich proteins and repeat RNA contribute to C9orf72-mediated neurodegeneration.Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are adult-onset, neurodegenerative diseases associated with personality change, language dysfunction and † Corresponding authors. a.isaacs@prion.ucl.ac.uk; l.partridge@ucl.ac.uk. Europe PMC Funders Group Europe PMC Funders Author ManuscriptsEurope PMC Funders Author Manuscripts progressive muscle weakness. These syndromes overlap genetically and pathologically, and can also co-occur in individuals, and within families (1). An intronic GGGGCC hexanucleotide repeat expansion in C9orf72 is the most common genetic cause of both FTD and ALS (C9FTD/ALS) (2-4), and can be found in patients diagnosed with all common neurodegenerative diseases (5). Healthy individuals carry fewer than 33 hexanucleotide repeats, with 2 repeats being the most common, but C9FTD/ALS cases carry between 400 and 4400 repeats (2, 5, 6).The repeat expansion could cause disease by three possible mechanisms: i) toxic sense and/or antisense repeat RNA species that sequester key RNA-binding proteins, ii) toxic dipeptide repeat (DPR) proteins, generated by repeat-associated, non-ATG (RAN) translation, or iii) reduced expression of C9orf72. The absence of a severe phenotype in a homozygous C9orf72 mutation case (7), and the lack of C9orf72 coding mutations (8) argue against loss-of-function as a primary mechanism. Neuronal aggregates of RNA, termed RNA foci, generated from both sense and antisense repeat transcripts are frequent in C9FTD/ALS patient brain (9-13). The GGGGCC repeat can be translated in all sense and antisense frames, two of which encode the same DPR, resulting in five DPR proteins, all of which form inclusions in widespread brain regions (10,12,(14)(15)(16)(17)(18). It is therefore of fundamental importance to understand the contributions of repeat RNA and DPR proteins to C9orf72-mediated neurodegeneration.A major obstacle in the investigation of large expanded repeats is that they are inherently unstable. We used recombination-deficient E. coli and a cloning strategy termed recursive directional ligati...
An expanded GGGGCC repeat in a non-coding region of the C9orf72 gene is a common cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis. Non-coding repeat expansions may cause disease by reducing the expression level of the gene they reside in, by producing toxic aggregates of repeat RNA termed RNA foci, or by producing toxic proteins generated by repeat-associated non-ATG translation. We present the first definitive report of C9orf72 repeat sense and antisense RNA foci using a series of C9FTLD cases, and neurodegenerative disease and normal controls. A sensitive and specific fluorescence in situ hybridisation protocol was combined with protein immunostaining to show that both sense and antisense foci were frequent, specific to C9FTLD, and present in neurons of the frontal cortex, hippocampus and cerebellum. High-resolution imaging also allowed accurate analyses of foci number and subcellular localisation. RNA foci were most abundant in the frontal cortex, where 51 % of neurons contained foci. RNA foci also occurred in astrocytes, microglia and oligodendrocytes but to a lesser degree than in neurons. RNA foci were observed in both TDP-43- and p62-inclusion bearing neurons, but not at a greater frequency than expected by chance. RNA foci abundance in the frontal cortex showed a significant inverse correlation with age at onset of disease. These data establish that sense and antisense C9orf72 repeat RNA foci are a consistent and specific feature of C9FTLD, providing new insight into the pathogenesis of C9FTLD.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-013-1200-z) contains supplementary material, which is available to authorized users.
Large expansions of a non-coding GGGGCC-repeat in the first intron of the C9orf72 gene are a common cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). G-rich sequences have a propensity for forming highly stable quadruplex structures in both RNA and DNA termed G-quadruplexes. G-quadruplexes have been shown to be involved in a range of processes including telomere stability and RNA transcription, splicing, translation and transport. Here we show using NMR and CD spectroscopy that the C9orf72 hexanucleotide expansion can form a stable G-quadruplex, which has profound implications for disease mechanism in ALS and FTD.
Recent studies have implicated the hormone leptin in synaptic plasticity associated with neuronal development and learning and memory. Indeed, leptin facilitates hippocampal long-term potentiation and leptin-insensitive rodents display impaired hippocampal synaptic plasticity suggesting a role for endogenous leptin. Structural changes are also thought to underlie activity-dependent synaptic plasticity and this may be regulated by specific growth factors. As leptin is reported to have neurotrophic actions, we have examined the effects of leptin on the morphology and filopodial outgrowth in hippocampal neurons. Here, we demonstrate that leptin rapidly enhances the motility and density of dendritic filopodia and subsequently increases the density of hippocampal synapses. This process is dependent on the synaptic activation of NR2A-containing NMDA receptors and is mediated by the MAPK (ERK) signaling pathway. As dendritic morphogenesis is associated with activity-dependent changes in synaptic strength, the rapid structural remodeling of dendrites by leptin has important implications for its role in regulating hippocampal synaptic plasticity and neuronal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.