Class III peroxidases (Prxs) are plant enzymes capable of using H(2)O(2) to oxidize a range of plant secondary metabolites, notably phenolic compounds. These enzymes are localized in the cell wall or in the vacuole, which is a target for secondary metabolite accumulation, but very little is known about the function of vacuolar Prxs. Here, the physiological role of the main leaf vacuolar Prx of the medicinal plant Catharanthus roseus, CrPrx1, was further investigated namely by studying its capacity to oxidize co-localized phenolic substrates at the expense of H(2)O(2). LC-PAD-MS analysis of the phenols from isolated leaf vacuoles detected the presence of three caffeoylquinic acids and four flavonoids in this organelle. These phenols or similar compounds were shown to be good CrPrx1 substrates, and the CrPrx1-mediated oxidation of 5-O-caffeoylquinic acid was shown to form a co-operative regenerating cycle with ascorbic acid. Interestingly, more than 90% of total leaf Prx activity was localized in the vacuoles, associated to discrete spots of the tonoplast. Prx activity inside the vacuoles was estimated to be 1809 nkat ml(-1), which, together with the determined concentrations for the putative vacuolar phenolic substrates, indicate a very high H(2)O(2) scavenging capacity, up to 9 mM s(-1). Accordingly, high light conditions, known to increase H(2)O(2) production, induced both phenols and Prx levels. Therefore, it is proposed that the vacuolar couple Prx/secondary metabolites represent an important sink/buffer of H(2)O(2) in green plant cells.
The direct uptake of DNA by naked plant cells (protoplasts) provides an expression system of exception for the quickly growing research in non-model plants, fuelled by the power of next-generation sequencing to identify novel candidate genes. Here, we describe a simple and effective method for isolation and transformation of protoplasts, and illustrate its application to several plant materials.
The isolation of vacuoles is an essential step to unravel the important and complex functions of this organelle in plant physiology. Here, we describe a method for the isolation of vacuoles from Catharanthus roseus leaves involving a simple procedure for the isolation of protoplasts, and the application of a controlled osmotic/thermal shock to the naked cells, leading to the release of intact vacuoles, which are subsequently purified by density gradient centrifugation. The purity of the isolated intact vacuoles is assayed by microscopy, western blotting, and measurement of vacuolar (V)-H-ATPase hydrolytic activity. Finally, membrane functionality and integrity is evaluated by measuring the generation of a transtonoplast pH gradient by the V-H-ATPase and the V-H-pyrophosphatase, also producing further information on vacuole purity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.