Flexible organic light emitting diode (OLED) will be the ultimate display technology to customers and industries in the near future but the challenges are still being unveiled one by one. Thin-film encapsulation (TFE) technology is the most demanding requirement to prevent water and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This work provides a review of promising thin-film barrier technologies as well as the basic gas diffusion background. Topics include the significance of the device structure, permeation rate measurement, proposed permeation mechanism, and thin-film deposition technologies (Vitex system and atomic layer deposition (ALD)/molecular layer deposition (MLD)) for effective barrier films.
Rifaximin has been reported to be effective for the treatment of hepatic encephalopathy (HE) in Europe. However, it is unknown whether Rifaximin is effective for the treatment of HE in Koreans, therefore we conducted a open-label prospective randomized study to evaluate the efficacy of rifaximin versus lactulose in Korean patients. Fifty-four patients with liver cirrhosis and hepatic encephalopathy were enrolled. Thirty-two patients were randomized to receive rifaximin and 22 to receive lactulose both over a 7-day periods. Before and at the end of treatment, gradation of blood ammonia, flapping tremor, mental status, number connection test (NCT) were performed and estimation of HE indexes determined. Both rifaximin and lactulose were effective in the majority of patients (84.4% and 95.4%, respectively, p=0.315). Blood NH3, flapping tremor, mental status, and NCT was significantly improved by rifaximin and lactulose, and the posttreatment levels of these measures were similar for the rifaximin and lactulose-treated groups, as was the HE index (rifaximin group (10.0→4.2, p=0.000); lactulose group (11.3→5.0, p=0.000)). One patient treated with rifaximin complained of abdominal pain, which was easily controlled. There was no episode of renal function impairment in either treatment group. Rifaximin proved to be as safe and as effective as lactulose for the treatment of Korean patients with hepatic encephalopathy.
Bacterial gastroenteritis is a risk factor of IBS and the duration of diarrhea as the index of severity of initial illness is an independent risk factor of PI-IBS. The clinical course of PI-IBS is variable over the 1 year of follow-up.
MicroRNAs (miRNAs) play a critical role in determining the differentiation fate of pluripotent stem cells and germ cells in mammals. However, the mechanism(s) of miRNA-mediated posttranscriptional regulation with regard to lineage specification and differentiation in chick development require further investigation. Therefore, we conducted miRNA expression profiling to explore specific miRNA signatures in undifferentiated blastoderm and primordial germ cells (PGCs). We identified seven miRNAs that are highly expressed in blastoderm and 10 that are highly expressed in PGCs. In this study, miR-302a and miR-456 for blastoderm and miR-181a* for PGCs were analyzed further for their target transcripts and regulatory pathways. Both miR-302a and miR-456 bound directly to the sex-determining region Y box 11 transcript and could act as posttranscriptional coregulators to maintain the undifferentiated state of the chicken blastoderm through the suppression of somatic gene expression and differentiation. Moreover, miR-181a* showed a bifunctional role in PGCs by binding to two different transcripts. miR-181a* inhibited the somatic differentiation of PGCs by silencing homeobox A1 expression. Additionally, miR-181a* prevented PGCs from entering meiosis through the repression of the nuclear receptor subfamily 6, group A, member 1 transcript. Collectively, our data demonstrate that in chickens miRNAs intrinsically regulate the differentiation fate of blastoderms and PGCs and that the specific timing of germ cell meiosis is controlled through miRNA expression.A t stage X, the chicken blastoderm consists of 40,000-60,000 undifferentiated embryonic cells and is able to develop pluripotent stem cells through in vitro culture (1). During chicken germline development, primordial germ cells (PGCs) first appear from the epiblast in the blastoderm and translocate to the hypoblast area of the pellucida (2, 3). During gastrulation, PGCs circulate through the vascular system and settle down in the gonadal anlagen. Such a differentiation pathway, including germ cell lineage during chicken embryo development, is a systematic process, governed by the concerted action of multiple unknown regulatory mechanisms (4-6).MicroRNAs (miRNAs) are small, noncoding RNAs ranging from 18 to 23 nucleotides that posttranscriptionally regulate gene expression in various tissues and cell types. Typically, miRNAs act as specific regulators of gene expression and are capable of controlling the fate of cells in a time-and tissue-specific manner (7, 8) through regulation of cellular differentiation, in addition to developmental patterning and morphogenesis (9-11). To date, several miRNA profiles have been classified as ESC-specific miRNAs, including miR-290-295 and miR-302-367 clusters (12, 13). However, both the miRNA expression profiling and posttranscriptional gene regulation for lineage specification, commitment, and differentiation during chicken embryo development remain largely uninvestigated. It has been shown recently that miRNA biogenesis and specific expr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.