Activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is one the most frequent genetic events in human cancer. A cell-based imaging assay that monitored the translocation of the Akt effector protein, Forkhead box O (FOXO), from the cytoplasm to the nucleus was employed to screen a collection of 33,992 small molecules. The positive compounds were used to screen kinases known to be involved in FOXO translocation. Pyrazolopyrimidine derivatives were found to be potent FOXO relocators as well as biochemical inhibitors of PI3K␣. A combination of virtual screening and molecular modeling led to the development of a structure-activity relationship, which indicated the preferred substituents on the pyrazolopyrimidine scaffold. This leads to the synthesis of ETP-45658, which is a potent and selective inhibitor of phosphoinositide 3-kinases and demonstrates mechanism of action in tumor cell lines and in vivo in treated mice.The phosphoinositide 3-kinase (PI3K) 4 /Akt pathway is activated in a variety of solid and non-solid tumors (1) and therefore is considered as a potential intervention point for anticancer therapeutics. Activation of the pathway is frequently caused by mutations in PI3K␣ that enhance its catalytic activity, leading to the generation of phosphatidyl 3,4,5-trisphosphate (PIP3) (2) or by mutations or deletions in the tumor suppressor PTEN (phosphatase and tensin homolog) that result in its loss of function. PTEN antagonizes the activity of PI3K␣ through the dephosphorylation PIP3 (3). In addition, PI3K␣ can be activated by mutations in certain receptor-tyrosine kinases as well as by mutations in the oncogene KRAS (4, 5).The PIP3 generated by activation of PI3K␣ or sustained by the inactivation of PTEN binds to a subset of lipid-binding domains in downstream targets such as the pleckstrin homology (PH) domain of the oncogene Akt (6, 7); thereby, recruiting it to the plasma membrane. Once at the plasma membrane, Akt can be activated (8, 9). When active, Akt phosphorylates several effector molecules including the Forkhead box O (FOXO) transcription factors (10, 11). FOXO proteins are a family of conserved polypeptides that bind to DNA as a monomer and activate the transcription of genes that are involved in numerous biologically relevant processes such as metabolism, differentiation, proliferation, longevity, and apoptosis (12, 13). Akt phosphorylates FOXO proteins at three conserved consensus sites, which leads to conformational changes that facilitate CRM-1-mediated nuclear export (14, 15). Nuclear FOXO proteins function as regulators of transcription, whereas cytoplasmic FOXO proteins are considered inactive. It is well established that FOXO is negatively regulated by various proliferative and antiapoptotic signaling pathways that activate the PI3K/Akt signaling cascade (11). Therefore, we chose to employ a high content imaging approach to monitor the nucleocytoplasmic translocation of a GFP-FOXO3a fusion protein in U2OS cells (U2foxRELOC) (16,17) as the readout for biological inhibition...
FOXO transcription factors are evolutionarily conserved proteins that orchestrate gene expression programs known to control a variety of cellular processes such as cell cycle, apoptosis, DNA repair and protection from oxidative stress. As the abrogation of FOXO function is a key feature of many tumor cells, regulation of FOXO factors is receiving increasing attention in cancer research. In order to discover genes involved in the regulation of FOXO activity, we performed a large-scale RNAmediated interference (RNAi) screen using cell-based reporter systems that monitor transcriptional activity and subcellular localization of FOXO. We identified genes previously implicated in phosphoinositide 3-kinase/Akt signaling events, which are known to be important for FOXO function. In addition, we discovered a previously unrecognized FOXO-repressor function of TRIB2, the mammalian homolog of the Drosophila gene tribbles. A cancer-profiling array revealed specific overexpression of TRIB2 in malignant melanoma, but not in other types of skin cancer. We provide experimental evidence that TRIB2 transcript levels correlate with the degree of cytoplasmic localization of FOXO3a. Moreover, we show that TRIB2 is important in the maintenance of the oncogenic properties of melanoma cells, as its silencing reduces cell proliferation, colony formation and wound healing. Tumor growth was also substantially reduced upon RNAi-mediated TRIB2 knockdown in an in vivo melanoma xenograft model. Our studies suggest that TRIB2 provides the melanoma cells with growth and survival advantages through the abrogation of FOXO function. Altogether, our results show the potential of large-scale cell-based RNAi screens to identify promising diagnostic markers and therapeutic targets.
PIM kinases are a family of serine/threonine kinases composed of three different isoforms (PIM1, PIM 2 and PIM 3) that are highly homologous. Their expression is mediated by the JAK/STAT signalling pathway, providing survival and cell cycle transition signals. PIM kinases are heavily targeted for anticancer drug discovery. However, very little is known about the relative contribution of the different isoforms to the tumourigenesis process in vivo, and how their individual inhibition might affect tumour growth. Taking advantage of genetically modified mice, we explored whether the inhibition of specific isoforms is required to prevent sarcomas induced by 3-methylcholanthrene carcinogenic treatment. We found that absence of Pim2 and Pim3 greatly reduced sarcoma growth to a similar extent to the absence of all three isoforms. This model of sarcoma generally produces bone invasion by the tumour cells. Lack of Pim2 and Pim3 reduced tumour-induced bone invasion by 70%, which is comparable with the reduction of tumour-induced bone invasion in the absence of all three isoforms. Similar results were obtained in mouse embryonic fibroblasts (MEFs) derived from these knockout (KO) mice, where double Pim2/3 KO MEFs already showed reduced proliferation and were resistant to oncogenic transformation by the RAS oncogene. Our data also suggest an important role of Gsk3β phosphorylation in the process of tumourigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.