Semiconductor nanowires (NWs) have shown robust hot carrier effects due to their small dimensions. Here, we study the cooling mechanisms of hot electrons in the time domain via transient absorption spectroscopy. Probe energies below the bandgap are used to determine the evolution of the carrier effective mass while probe energies above the bandgap track the conduction band occupation. From excitation intensity dependent measurements, we confirm that electron-hole interactions are a major cooling channel at large carrier density, given the high ratio of mh/me of InAs. Our experiments indicate that this cooling channel is amplified in passivated core-shell NWs. We associate this effect with spatial carrier separation caused by Fermi-level pinning in unpassivated NWs. In core-shell NWs, bands are considerably more flat which increases radiative recombination and electron-hole scattering with the latter cooling the hot electron population. Our results highlight the advantages of carrier separation if high carrier densities are to be used for hot phonon bottlenecks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.