An energy and exergy thermodynamic analysis using EES program was done for a domestic refrigerator working with R-134a using vapor compression refrigeration cycle. The analysis deals with the system component, i.e. compressor, condenser, evaporator and the expansion device. The analysis depends on the entropy generation minimization approach to improve the refrigerator performance by exploring the optimum design points. These design points were derived from three different theories governing the entropy generation minimization using exergy analyzing method. These theories were first applied to find the optimum balance between the hot inner condenser area and the cold inner evaporator area of the refrigerator and between its hot and cold thermal conductances. Nine types of condensers were used according to its internal surface area and thermal conductance, in order to reach the minimum entropy generation in the refrigerator. The results showed that the compressor has the lowest exergy efficiency of 25%. The expansion device was the second component after the compressor with exergy efficiency of 92%, followed by the condenser with an efficiency of 93%. The evaporator was found to have an exergy efficiency of 98 %. The experimental tests were repeated for the nine condensers sizes with three different ambient temperatures 25℃, 30℃ and 35℃. The exergy analysis showed that the design of the refrigerator mainly depends on thermal conductance calculations rather than the surface inner area estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.