Recognition of human actions form videos has been an active area of research because it has applications in various domains. The results of work in this field are used in video surveillance, automatic video labeling and human-computer interaction, among others. Any advancements in this field are tied to advances in the interrelated fields of object recognition, spatio- temporal video analysis and semantic segmentation. Activity recognition is a challenging task since it faces many problems such as occlusion, view point variation, background differences and clutter and illumination variations. Scientific achievements in the field have been numerous and rapid as the applications are far reaching. In this survey, we cover the growth of the field from the earliest solutions, where handcrafted features were used, to later deep learning approaches that use millions of images and videos to learn features automatically. By this discussion, we intend to highlight the major breakthroughs and the directions the future research might take while benefiting from the state-of-the-art methods.
Deep learning has been used in computer vision to accomplish many tasks that were previously considered too complex or resource-intensive to be feasible. One remarkable application is the creation of deepfakes. Deepfake images change or manipulate a person’s face to give a different expression or identity by using generative models. Deepfakes applied to videos can change the facial expressions in a manner to associate a different speech with a person than the one originally given. Deepfake videos pose a serious threat to legal, political, and social systems as they can destroy the integrity of a person. Research solutions are being designed for the detection of such deepfake content to preserve privacy and combat fake news. This study details the existing deepfake video creation techniques and provides an overview of the deepfake datasets that are publicly available. More importantly, we provide an overview of the deepfake detection methods, along with a discussion on the issues, challenges, and future research directions. The study aims to present an all-inclusive overview of deepfakes by providing insights into the deepfake creation techniques and the latest detection methods, facilitating the development of a robust and effective deepfake detection solution.
The rapid growth of online media over different social media platforms or over the internet along with many benefits have some negative effects as well. Deep learning has many positive applications like medical, animations and cybersecurity etc. But over the past few years, it is observed that it is been used for negative aspects as well such as defaming, black-mailing and creating privacy concerns for the general public. Deepfake is common terminology used for facial forgery of a person in media like images or videos.The advancement in the forgery creation area have challenged the researchers to create and develop advance forgery detection systems capable to detect facial forgeries. Proposed forgery detection system works on the CNN-LSTM model in which we first extracted faces from the frames using MTCNN then performed spatial feature extraction using pretrained Xception network and then used LSTM for temporal feature extraction. At the end classification is performed to predict the video as real or fake. The system is capable to detect low quality videos. The current system has shown good accuracy results for detecting real or fake videos on the Google deepfake AI dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.