In this study, three feather degrading bacterial strains were isolated from agroindustrial residues from a Brazilian poultry farm. Three Gram-positive, spore-forming, rod-shaped bacteria and were identified as B. subtilis 1271, B. licheniformis 1269 and B. cereus 1268 using biochemical, physiologic and molecular methods. These Bacillus spp. strains grew and produced keratinases and peptidases using chicken feather as the sole source of nitrogen and carbon. B. subtilis 1271 degraded feathers completely after 7 days at room temperature and produced the highest levels of keratinase (446 U ml(-1)). Feather hydrolysis resulted in the production of serine, glycine, glutamic acid, valine and leucine as the major amino acids. Enzymography and zymography analyses demonstrated that enzymatic extracts from the Bacillus spp. effectively degraded keratin and gelatin substrates as well as, casein, hemoglobin and bovine serum albumin. Zymography showed that B. subtilis 1271 and B. licheniformis 1269 produced peptidases and keratinases in the 15-140 kDa range, and B. cereus produced a keratinase of ~200 kDa using feathers as the carbon and nitrogen source in culture medium. All peptidases and keratinases observed were inhibited by the serine specific peptidase inhibitor phenylmethylsulfonyl fluoride (PMSF). The optimum assay conditions of temperature and pH for keratinase activity were 40-50°C and pH 10.0 for all strains. For gelatinases the best temperature and pH ranges were 50-70°C and pH 7.0-11. These isolates have potential for the biodegradation of feather wastes and production of proteolytic enzymes using feather as a cheap and eco-friendly substrate.
Three Bacillus species (B. subtilis LFB-FIOCRUZ 1270, B. subtilis LFB-FIOCRUZ 1273, and B. licheniformis LFB-FIOCRUZ 1274), isolated from the poultry industry, were evaluated for keratinase production using feathers or feather meal as the sole carbon and nitrogen sources in a submerged fermentation. The three Bacillus spp. produced extracellular keratinases and peptidases after 7 days. Feather meal was the best substrate for keratinase and peptidase production in B. subtilis 1273, with 412 U/mL and 463 U/ml. The three strains were able to degrade feather meal (62–75%) and feather (40–95%) producing 3.9–4.4 mg/ml of soluble protein in feather meal medium and 1.9–3.3 mg/ml when feather medium was used. The three strains produced serine peptidases with keratinase and gelatinase activity. B. subtilis 1273 was the strain which exhibited the highest enzymatic activity.
Aims: To determine the ability of a novel Bacillus subtilis AMR isolated from poultry waste to hydrolyse human hair producing peptidases including keratinases and hair keratin peptides. Methods and Results: The Bacillus subtilis AMR was identified using biochemical tests and by analysis of 16S rDNA sequence. The isolate was grown in medium containing human hair as the sole source of carbon and nitrogen. The supplementation of hair medium (HM) with 0·01% yeast extract increased the keratinolytic activity 4·2‐fold. B. subtilis AMR presented high keratinase production on the 8th day of fermentation in hair medium (HM) supplemented with 0·01% yeast extract (HMY) at pH 8·0. Keratinase yield was not correlated with increase in biomass. Zymography showed keratin‐degrading peptidases migrating at c. 54, 80 and 100 kDa and gelatin‐degrading bands at c. 80, 70 63, 54 32 and 15 kDa. Keratinases were optimally active at 50°C and pH 9·0 and was fully inhibited by the serine proteinase inhibitor (PMSF). Scanning electron microscopy showed complete degradation of the hair cuticle after exposure to B. subtilis AMR grown in HMY. MALDI‐TOF analysis of culture supernatant containing peptides produced during enzymatic hydrolysis of hair by B. subtilis AMR revealed fragments in a range of 800–2600 Da. Conclusions: This study showed that B. subtilis AMR was able to hydrolyse human hair producing serine peptidases with keratinase and gelatinase activity as well as hair keratin peptides. Significance and Impact of the Study: This is the first report describing the production and partial characterization of keratinases by a B. subtilis strain grown in a medium containing human hair. These data suggest that peptides obtained from enzymatic hair hydrolysis may be useful for future applications on pharmaceutical and cosmetic formulations.
The aim of this study is to investigate the culture conditions of chicken feather degradation and keratinolytic enzyme production by the recently isolated Bacillus subtilis SLC and to evaluate the potential of the SLC strain to recycle feather waste discarded by the poultry industry. The SLC strain was isolated from the agroindustrial waste of a poultry farm in Brazil and was confirmed to belong to Bacillus subtilis by rDNA gene analysis. There was high keratinase production when the medium was at pH 8 (280 U ml(-1)). Activity was higher using the inoculum propagated for 72 h on 1% whole feathers supplemented with 0.1% yeast extract. In the enzymatic extract, the keratinases were active in the pH range from 2.0 to 12.0 with a maximum activity at pH 10.0 and temperature 60°C. For gelatinase the best pH was 5.0 and the best temperature was 37°C. All keratinases are serine peptidases. The crude enzymatic extract degraded keratin, gelatin, casein, and hemoglobin. Scanning electron microscopy showed Bacillus cells adhered onto feather surfaces after 98 h of culture and degraded feather filaments were observed. MALDI-TOF mass spectrometric analysis showed multiple peaks from 522 to 892 m/z indicating feather degradation. The presence of sulfide was detected on extracellular medium probably participating in the breakdown of sulfide bridges of the feather keratin. External addition of sulfide increased feather degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.