This thesis studies ordinary chondrites with cluster chondrite lithologies using electron backscatter diffraction so as to measure the temperatures of their olivine grains during deformation, for the purpose of constraining the accretion temperatures of cluster chondrites and creating new constraints on chondrule formation models. Samples analyzed
We examined H4 chondrites Beaver Creek, Forest Vale, Quenggouk, Ste. Marguerite, and Sena with the electron backscatter diffraction (EBSD) techniques of Ruzicka and Hugo (2018) to determine if there is evidence for shock metamorphism consistent with the previously inferred histories of their early impact excavation or lack thereof. We find that all samples have EBSD data consistent with a history of synmetamorphic impact shock (i.e., shock during thermal metamorphism), followed by postshock annealing. Petrographic analysis of Sena, Quenggouk, and Ste. Marguerite found exsolved Cu and irregular troilite within Fe metal, features consistent with shock metamorphism. All samples have a spatial variability in grain deformation consistent with shock processes, though Forest Vale, Quenggouk, and Ste. Marguerite may have relict signatures of accretional deformation as indicated by variability in their olivine deformation metrics. Within the context of previous workers' geochemical observations, a more complex history is inferred for each sample. The "slow-cooled" samples, Quenggouk and Sena, were subject to synmetamorphic shock without excavation and annealed at depth. The same is true of the "fast-cooled" samples, Beaver Creek, Forest Vale, and Ste. Marguerite. However, after annealing, these rocks were excavated by a secondary impact or impacts around 5.2-6.5 Ma post-CAI formation and were left to cool rapidly on the surface of the H chondrite parent body. These interpreted histories are best compatible with a model of an impact-battered but intact onion shell for the earliest history of the H parent body. However, the EBSD evidence does not preclude a parent body disruption after 7 Ma post-CAI formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.