A problem in nonlinear water-wave propagation on the surface of an inviscid, stationary fluid is presented.The primary surface wave, suitably initiated at some radius, is taken to be a slowly evolving nonlinear cylindrical wave (governed by an appropriate Korteweg-de Vries equation); the depth is assumed to be varying in a purely radial direction.We consider a sech 2 profile at an initial radius (which is, following our scalings, rather large), and we describe the evolution as it propagates radially outwards. This initial profile was chosen because its evolution over constant depth is understood both analytically and numerically, even though it is not an exact solitary-wave solution of the cylindrical KdV equation. The propagation process will introduce reflected and re-reflected components which will also be described. The precise nature of these reflections is fixed by the requirements of mass conservation.The asymptotic results presented describe the evolution of the primary wave, the development of an outward shelf and also an inward (reflected) shelf. These results make use of specific depth variations (which were chosen to simplify the solution of the relevant equations), and mirror those obtained for the problem of 1-D plane waves over variable depth, although the details here are more complex due to the axi-symmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.