Several attempts have been made to detect and retrieve fetal nucleated cells including nucleated erythrocytes (NRBCs), leukocytes, and trophoblasts in maternal blood. We have recently developed a new method for non-invasive fetal DNA diagnosis from maternal blood. Peripheral blood granulocytes including NRBCs were isolated by a discontinuous density gradient method using Percoll (Pharmasia). NRBCs were found and retrieved at a single cell level using a micromanipulator under a microscope. To determine whether the origin of the NRBCs was maternal or fetal, the NRBCs were analysed by polymerase chain reaction (PCR) amplification to determine the presence of a Y-chromosome-specific repeat sequence in mothers carrying male fetuses. We were successful in predicting fetal sex accurately in 10 out of 11 samples taken from maternal blood. This new technique opens up fetal DNA diagnosis from maternal blood during the first trimester of pregnancy to the whole population because there is no risk to the fetus or the mother.
Sepsis-associated AKI is a life-threatening complication that is associated with high morbidity and mortality in patients who are critically ill. Although it is clear early supportive interventions in sepsis reduce mortality, it is less clear that they prevent or ameliorate sepsis-associated AKI. This is likely because specific mechanisms underlying AKI attributable to sepsis are not fully understood. Understanding these mechanisms will form the foundation for the development of strategies for early diagnosis and treatment of sepsis-associated AKI. Here, we summarize recent laboratory and clinical studies, focusing on critical factors in the pathophysiology of sepsis-associated AKI: microcirculatory dysfunction, inflammation, NOD-like receptor protein 3 inflammasome, microRNAs, extracellular vesicles, autophagy and efferocytosis, inflammatory reflex pathway, vitamin D, and metabolic reprogramming. Lastly, identifying these molecular targets and defining clinical subphenotypes will permit precision approaches in the prevention and treatment of sepsis-associated AKI.
The significant lessening of spasms in the O. oris after BTX injection to the O. oculi and the concomitant reduction in excitability of O. oris neurons are consistent with the hypothesis that in HFS, skin or muscle afferent volleys via the trigeminal nerve enhance the excitability of facial nerve motoneurons.
In the vertebrate ventral spinal cord, p2 progenitors give rise to two interneuron subtypes: excitatory V2a interneurons and inhibitory V2b interneurons. In the differentiation of V2a and V2b cells, Notch signaling promotes V2b fate at the expense of V2a fate. Later, V2b cells extend axons along the ipsilateral side of the spinal cord and express the inhibitory transmitter GABA. Notch signaling has been reported to inhibit the axonal outgrowth of mature neurons of the central nervous system; however, it remains unknown how Notch signaling modulates V2b neurite outgrowth and maturation into GABAergic neurons. Here, we have investigated neuron-specific Notch functions regarding V2b axon growth and maturation into zebrafish GABAergic neurons. We found that continuous neuron-specific Notch activation enhanced V2b fate determination but inhibited V2b axonal outgrowth and maturation into GABAergic neurons. These results suggest that Notch signaling activation is required for V2b fate determination, whereas its downregulation at a later stage is essential for V2b maturation. Accordingly, we found that a Notch signaling downstream gene, her15.1, showed biased expression in V2 linage cells and downregulated expression during the maturation of V2b cells, and continuous expression of her15.1 repressed V2b axogenesis. Our data suggest that spatiotemporal control of Notch signaling activity is required for V2b fate determination, maturation and axogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.