A colloidal suspension can be either dispersed or flocculated depending on the interaction between the colloidal particles. If the interaction is repulsive, particles can relax to the minimum of the potential due to their neighboring particles, and the system can reach an equilibrium dispersed state. In the case of attractive interaction, particles form aggregates that settle to the bottom of the container. As the concentration of particles is increased, the overcrowding of the aggregates produces a continuous network throughout the suspension before they settle and a colloidal gel is formed. A major difference between a colloidal gel and a colloidal suspension is that the gel can sustain finite stress and is therefore viscoelastic. Previously we studied the storage modulus and the yield strain of boehmite gels and found that they are related to the particle concentration in a power-law fashion [1]. Similar scaling behavior of the shear modulus was found for other colloidal particulate networks by Buscall et al. [2]. We developed a scaling theory [1] which successfully explains the experimental results on boehmite gels. The theory further predicts that there can be two types of power-law behavior depending on the relative elastic strength of the clusters to that of the links between clusters within the gel network. Furthermore, there can be a crossover from one type of behavior to the other as the particle concentration is varied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.