An Al/p-Si/poly[2-methoxy-5-(2-ethylhexoxy)-p-phenylenevinylene] (MEH-PPV)/Ag organic heterojunction has been prepared using homemade ultrasonic spray pyrolysis (USP) equipment for deposition of the organic thin film and physical vapor deposition (PVD) for the metallic contacts. The organic layer produced on glass was analyzed by optical and morphological methods. The bandgap of the organic thin film was found to be $ 2.03 eV with a thickness of around 140 nm, using ultraviolet-visible (UV-Vis) and scanning electron microscopy (SEM) characterization, respectively. The amorphous nature of the MEH-PPV polymer was confirmed by its x-ray diffraction pattern. To determine the electrical parameters, the heterojunction based on MEH-PPV was characterized by current-voltage (I-V) and capacitance-voltage (C-V) measurements in the dark at room temperature. The ideality factor and barrier height of the organic heterojunction were found to be 3.6 eV and 0.56 eV to 0.59 eV, respectively, with an average series resistance of 94.39 X, based on the I-V characteristics. The barrier height was also calculated based on the capacitance-voltage measurements, yielding slightly different results due to the applied frequencies of 10 kHz (/ B ¼ 0:50) and 1 MHz ð/ B ¼ 0:74Þ, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.