Alzheimer disease (AD) is neuropathologically characterized by the formation of senile plaques from amyloid-β (Aβ) and neurofibrillary tangles composed of phosphorylated Tau. Although there is growing evidence for the pathogenic role of soluble Aβ species in AD, the major question of how Aβ induces hyperphosphorylation of Tau remains unanswered. To address this question, we here developed a novel cell coculture system to assess the effect of extracellular Aβ at physiologically relevant levels naturally secreted from donor cells on the phosphorylation of Tau in recipient cells. Using this assay, we demonstrated that physiologically relevant levels of secreted Aβ are sufficient to cause hyperphosphorylation of Tau in recipient N2a cells expressing human Tau and in primary culture neurons. This hyperphosphorylation of Tau is inhibited by blocking Aβ production in donor cells. The expression of familial AD-linked PSEN1 mutants and APP ΔE693 mutant that induce the production of oligomeric Aβ in donor cells results in a similar hyperphosphorylation of Tau in recipient cells. The mechanism underlying the Aβ-induced Tau hyperphosphorylation is mediated by the impaired insulin signal transduction because we demonstrated that the phosphorylation of Akt and GSK3β upon insulin stimulation is less activated under this condition. Treating cells with the insulin-sensitizing drug rosiglitazone, a peroxisome proliferator-activated receptor γ agonist, attenuates the Aβ-dependent hyperphosphorylation of Tau. These findings suggest that the disturbed insulin signaling cascade may be implicated in the pathways through which soluble Aβ induces Tau phosphorylation and further support the notion that correcting insulin signal dysregulation in AD may offer a potential therapeutic approach.
Background/Aim: Mutations in MAPT cause frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Patients with the MAPT R406W mutation were reported to show phenotypic heterogeneity in different ethnic backgrounds. We here report the clinical and genetic characteristics of Japanese families with the R406W mutation. Methods: We examined the clinical and neuroimaging features of 6 patients from three families with the R406W mutation. We determined the genotypes of intragenic MAPT single-nucleotide polymorphisms (SNPs) and the flanking microsatellite markers to search for a common founder. Results: The initial symptom was memory loss with the average age at onset being 54 years. Anterograde amnesia with episodic memory impairment was the predominant phenotype. Behavioral and personality changes or parkinsonism is not a prominent feature. A brain MRI study revealed marked atrophy of the medial temporal lobe. Genetic analysis of SNPs and microsatellite markers revealed that the affected members of the three families share common genotypes. Conclusion: The findings of the affected members in this study, which corroborate previously reported findings of European families, suggest that the R406W mutation may represent a phenotype of predominant anterograde amnesia in FTLD-17. Our genetic data suggest that a founder effect may account for some families with the R406W mutation.
Digital auscultation of bowel sounds was performed in newly diagnosed, drug-naïve patients with Parkinson's disease (PD) (n = 10), multiple system atrophy (MSA) (n = 12), progressive supranuclear palsy/corticobasal degeneration (PSP/CBD) (n = 7), and control subjects (n = 18). The number of bowel sounds per minute and the integrated time of bowel sounds were significantly lower in PD and MSA patients than in control subjects. Reduced bowel sounds may herald compromised gastrointestinal motility in patients with PD and MSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.