B-type ephrins are membrane-bound proteins that maintain tissue function in several organs. We previously reported that ephrin-B1 is localized at the slit diaphragm of glomerular podocytes. However, the function of ephrin-B1 at this location is unclear. We analyzed the phenotype of podocyte-specific ephrin-B1 knockout mice and assessed the molecular association of ephrin-B1 and nephrin, a key molecule of the slit diaphragm, in HEK293 cells and rats with anti-nephrin antibody-induced nephropathy. Compared with controls, ephrin-B1 conditional knockout mice displayed altered podocyte morphology, disarrangement of the slit diaphragm molecules, and proteinuria. Ephrin-B1 expressed in HEK293 cells immunoprecipitated with nephrin, which required the basal regions of the extracellular domains of both proteins. Treatment of cells with an anti-nephrin antibody promoted the phosphorylation of nephrin and ephrin-B1. However, phosphorylation of ephrin-B1 did not occur in cells expressing a mutant nephrin lacking the ephrin-B1 binding site or in cells treated with an Src kinase inhibitor. The phosphorylation of ephrin-B1 enhanced the phosphorylation of nephrin and promoted the phosphorylation of c-Jun N-terminal kinase (JNK), which was required for ephrin-B1-promoted cell motility in wound-healing assays. Notably, phosphorylated JNK was detected in the glomeruli of control mice but not ephrin-B1 conditional knockout mice. In rats, the phosphorylation of ephrin-B1, JNK, and nephrin occurred in the early phase (24 hours) of anti-nephrin antibody-induced nephropathy. Through interactions with nephrin, ephrin-B1 maintains the structure and barrier function of the slit diaphragm. Moreover, phosphorylation of ephrin-B1 and, consequently, JNK are involved in the development of podocyte injury.
A membrane protein fraction showing affinity for ribosomes was isolated from rat liver microsomes (microsomal fractions) in association with ribosomes by treatment of the microsomes with Emulgen 913 and then solubilized from the ribosomes with sodium deoxycholate. This protein fraction was separated into two fractions, glycoproteins, including ribophorins I and II, and non-glycoproteins, virtually free from ribophorins I and II, on concanavalin A-Sepharose columns. The two fractions were each reconstituted into liposomes to determine their ribosome-binding activities. The specific binding activity of the non-glycoprotein fraction was approx. 2.3-fold higher than that of the glycoprotein fraction. The recovery of ribosome-binding capacity of the two fractions was about 85% of the total binding capacity of the material applied to a concanavalin A-Sepharose column, and about 90% of it was found in the non-glycoprotein fraction. The affinity constants of the ribosomes for the reconstituted liposomes were somewhat higher than those for stripped rough microsomes. The mode of ribosome binding to the reconstituted liposomes was very similar to that to the stripped rough microsomes, in its sensitivity to proteolytic enzymes and its strong inhibition by increasing KCl concentration. These results support the idea that ribosome binding to rat liver microsomes is not directly mediated by ribophorins I and II, but that another unidentified membrane protein(s) plays a role in ribosome binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.