Effective ocean management and conservation of highly migratory species depends onresolving overlap between animal movements and distributions, and fishing effort.However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort.We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.Industrialised fishing is a major source of mortality for large marine animals (marine megafauna) 1-6 . Humans have hunted megafauna in the open ocean for at least 42,000 years 7 , but international fishing fleets targeting large, epipelagic fishes did not spread into the high seas (areas beyond national jurisdiction) until the 1950s 8 . Prior to this, the high seas constituted a spatial refuge largely free from exploitation as fishing pressure was concentrated on continental shelves 3,8 . Pelagic sharks are among the widest ranging vertebrates, with some species exhibiting annual ocean-basin-scale migrations 9 , long term trans-ocean movements 10 , and/or fine-scale site fidelity to preferred shelf and open ocean areas 5,9,11 . These behaviours could cause extensive spatial overlap with different fisheries from coastal areas to the deep ocean. On average, large pelagic sharks account for 52% of all identified shark catch worldwide in target fisheries or as bycatch 12 . Regional declines in abundance of pelagic sharks have been reported 13,14 , but it is unclear whether exposure to high fishing effort extends across ocean-wide population ranges and overlaps areas in the high seas where sharks are most abundant 5,13 .Conservation of pelagic sharkswhich currently have limited high seas management 12,15,16would benefit greatly from a clearer understanding of the spatial relationships between sharks' habitats and active fishing zones. However, obtaining unbiased estimates of shark and fisher distributions is complicated by the fact that most data on pelagic sharks come from catch records and other fishery-dependent sources 4,15,16 .Here, we provide the first global estimate of the extent of space use overlap of sharks with industrial fisheries. This is based on the analysis of the movements of pelagic sharks tagged with satellite transmitters in the Atlantic, Indian and Pacific oceans, together with fishing vessel movements m...
Abstract. The ability to measure sesquiterpenes (SQT; C 15 H 24 ) by a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) was investigated. SQT calibration standards were prepared by a capillary diffusion method and the PTR-MSestimated mixing ratios were derived from the counts of product ions and proton transfer reaction constants. These values were compared with mixing ratios determined by a calibrated Gas Chromatograph (GC) coupled to a Flame Ionization Detector (GC-FID). Product ion distributions from soft-ionization occurring in a selected ion drift tube via proton transfer were measured as a function of collision energies. Results after the consideration of the mass discrimination of the PTR-MS system suggest that quantitative SQT measurements within 20% accuracy can be achieved with PTR-MS if two major product ions (m/z 149 + and 205 + ), out of seven major product ions (m/z 81 + , 95 + , 109 + , 123 + , 135 + , 149 + and 205 + ), are accounted for. Considerable fragmentation of bicyclic sesquiterpenes, i.e. β-caryophyllene and α-humulene, cause the accuracy to be reduced to 50% if only the parent ion (m/z 205 + ) is considered. These findings were applied to a field dataset collected above a deciduous forest at the PROPHET (Program for Research on Oxidants: Photochemistry, Emissions, and Transport) research station in 2005. Inferred average daytime ecosystem scale mixing ratios (fluxes) of isoprene, sum of monoterpenes (MT), and sum of SQT exhibited values of 15 µg m −3 (4.5 mg m −2 h −1 ), 1.2 µg m −3 (0.21 mg m −2 h −1 ), and 0.0016 µg m −3 (0.10 mg m −2 h −1 ), respectively. A range of MT and SQT reactivities with respect to the OH radical was calculated and compared to an Correspondence to: S. Kim (saewung@ucar.edu) earlier study inferring significantly underestimated OH reactivities due to unknown terpenes above this deciduous forest. The results indicate that incorporating these MT and SQT results can resolve ∼30% of missing OH reactivity reported for this site.
Bull sharks (Carcharhinus leucas) are globally distributed top predators that play an important ecological role within coastal marine communities. However, little is known about the spatial and temporal scales of their habitat use and associated ecological role. In this study, we employed passive acoustic telemetry to investigate the residency patterns and migration dynamics of 18 adult bull sharks (195–283 cm total length) tagged in southern Mozambique for a period of between 10 and 22 months. The majority of sharks (n = 16) exhibited temporally and spatially variable residency patterns interspersed with migration events. Ten individuals undertook coastal migrations that ranged between 433 and 709 km (mean = 533 km) with eight of these sharks returning to the study site. During migration, individuals exhibited rates of movement between 2 and 59 km.d−1 (mean = 17.58 km.d−1) and were recorded travelling annual distances of between 450 and 3760 km (mean = 1163 km). Migration towards lower latitudes primarily took place in austral spring and winter and there was a significant negative correlation between residency and mean monthly sea temperature at the study site. This suggested that seasonal change is the primary driver behind migration events but further investigation is required to assess how foraging and reproductive activity may influence residency patterns and migration. Results from this study highlight the need for further understanding of bull shark migration dynamics and suggest that effective conservation strategies for this vulnerable species necessitate the incorporation of congruent trans-boundary policies over large spatial scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.