A 44-year old woman with recurrent solitary fibrous tumor (SFT)/hemangiopericytoma was enrolled in a clinical sequencing program including whole exome and transcriptome sequencing. A gene fusion of the transcriptional repressor NAB2 with the transcriptional activator STAT6 was detected. Transcriptome sequencing of 27 additional SFTs all revealed the presence of a NAB2-STAT6 gene fusion. Using RT-PCR and sequencing, we detected this fusion in 51 of 51 SFTs, indicating high levels of recurrence. Expression of NAB2-STAT6 fusion proteins was confirmed in SFT, and the predicted fusion products harbor the early growth response (EGR)-binding domain of NAB2 fused to the activation domain of STAT6. Overexpression of the NAB2-STAT6 gene fusion induced proliferation in cultured cells and activated EGR-responsive genes. These studies establish NAB2-STAT6 as the defining driver mutation of SFT and provide an example of how neoplasia can be initiated by converting a transcriptional repressor of mitogenic pathways into a transcriptional activator.
Despite significant development recently, improving the power conversion efficiency of organic photovoltaics (OPVs) is still an ongoing challenge to overcome. One of the prerequisites to achieving this goal is to enable efficient charge separation and small voltage losses at the same time. In this work, a facile synthetic strategy is reported, where optoelectronic properties are delicately tuned by the introduction of electron-deficient-core-based fused structure into non-fullerene acceptors. Both devices exhibited a low voltage loss of 0.57 V and high short-circuit current density of 22.0 mA cm−2, resulting in high power conversion efficiencies of over 13.4%. These unconventional electron-deficient-core-based non-fullerene acceptors with near-infrared absorption lead to low non-radiative recombination losses in the resulting organic photovoltaics, contributing to a certified high power conversion efficiency of 12.6%.
Effective management of the insulating ligands is prerequisite for achieving good electrical coupling between colloidal quantum dots (CQDs) and, thus, highperformance solar cells. Here, we developed a rationally designed post-synthetic process for effective control of ligand density on organic-inorganic hybrid formamidinium lead triiodide (FAPbI 3) perovskite CQDs. The resulting FAPbI 3 CQD solar cells demonstrated power-conversion efficiency of 8.38% with stability superior to that of bulk FAPbI 3 devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.