The inverse square force law admits a conserved vector that lies in the plane of motion.This vector has been associated with the names of Laplace, Runge, and Lenz, among others.Many workers have explored aspects of the symmetry and degeneracy associated with this vector and with analogous dynamical symmetries. We define a conserved dynamical variable α that characterizes the orientation of the orbit in two-dimensional configuration space for the Kepler problem and an analogous variable β for the isotropic harmonic oscillator. This orbit orientation variable is canonically conjugate to the angular momentum component normal to the plane of motion. We explore the canonical one-parameter group of transformations generated by α (β).Because we have an obvious pair of conserved canonically conjugate variables, it is desirable to use them as a coordinate-mometum pair. In terms of these phase space coordinates, the form of the Hamiltonian is nearly trivial because neither member of the pair can occur explicitly in the Hamiltonian. From these considerations we gain a simple picture of dynamics in phase space.The procedure we use is in the spirit of the Hamilton-Jacobi method.
2
I. The Kepler ProblemThere are hundreds of papers 1-10 on the power, applications, and extensions of the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.