We report the design, fabrication, and measurement of an ultra-broadband wide-angle reflective cross-polarization convertor using the compact H-shaped metasurface. The significant bandwidth expansion is attributed to the four electromagnetic resonances generated in an H-shaped unit. The simulation results show that the polarization conversion ratio (PCR) of the proposed metasurface is above 90% in the frequency range from 7 to 19.5 GHz and the relative bandwidth reaches 94%. The proposed metasurface is valid for a wide range of incident angles, and the mean polarization conversion ratio remains 80% even though the incident angle reaches 41.5°. The experimental results are in good agreement with the simulation results. Compared with the previous designs, the proposed linear polarization converter has a simple geometry but an excellent performance and hence has potential applications in microwave communications, remote sensors, and imaging systems.
An eight-element multiple-input multiple-output (MIMO) frame antenna array in the 3.5 GHz band (3400–3600 MHz) for 5G mobile terminal systems was presented. By using the adjacent grounding and electromagnetic coupling feeding technology, the loop antenna element could generate two resonant frequencies, thus effectively expanding its bandwidth. By adopting double-sided parallel strip line (DSPSL) technology, the electromagnetic coupling inside the loop antenna could be adjusted, and the size of the loop antenna could be effectively reduced so that the MIMO antenna array could obtain a low-profile structure. The total size of the MIMO array was 150 mm × 75 mm × 5.3 mm. Without additional isolation measures, the measured −6 dB impedance bandwidth (BW) was 3400–3660 MHz, and the minimum isolation between antenna elements was better than −20 dB. The proposed antenna was expected to be applied to 5G mobile terminals based on its low-profile, high-isolated characteristics, and good MIMO performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.