In humans, mutations in the PIEZO2 gene, which encodes for a mechanosensitive ion channel, were found to result in skeletal abnormalities including scoliosis and hip dysplasia. Here, we show in mice that loss of Piezo2 expression in the proprioceptive system recapitulates several human skeletal abnormalities. While loss of Piezo2 in chondrogenic or osteogenic lineages does not lead to human-like skeletal abnormalities, its loss in proprioceptive neurons leads to spine malalignment and hip dysplasia. To validate the non-autonomous role of proprioception in hip joint morphogenesis, we studied this process in mice mutant for proprioceptive system regulators Runx3 or Egr3. Loss of Runx3 in the peripheral nervous system, but not in skeletal lineages, leads to similar joint abnormalities, as does Egr3 loss of function. These findings expand the range of known regulatory roles of the proprioception system on the skeleton and provide a central component of the underlying molecular mechanism, namely Piezo2.
Wound healing is a well-orchestrated process that typically recruits the immune and vascular systems to restore the structure and function of the injured tissue. Injuries to the enthesis, a hypocellular and avascular tissue, often result in fibrotic scar formation and loss of mechanical properties, thereby severely affecting musculoskeletal function and life quality. This raises questions about the healing capabilities of the enthesis.
Here, we established an injury model to the Achilles entheses of neonatal mice to study the possibility that at an early age, the enthesis can heal more effectively. Histology and immunohistochemistry analyses revealed an atypical process that did not involve inflammation or angiogenesis. Instead, neonatal enthesis healing was mediated by secretion of collagen types I and II by resident cells, which formed a permanent hypocellular and avascular scar. Transmission electron microscopy showed that the cellular response to injury, including ER stress, autophagy and cell death, varied between the tendon and cartilage ends of the enthesis. Single-molecule in situ hybridization, immunostaining, and TUNEL assays verified these differences. Finally, gait analysis showed that these processes effectively restored function of the injured leg.
Collectively, these findings reveal a novel healing mechanism in neonatal entheses, whereby local ECM secretion by resident cells forms an acellular ECM deposit in the absence of inflammation markers, allowing gait restoration. These insights into the healing mechanism of a complex transitional tissue may lead to new therapeutic strategies for adult enthesis injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.