alpha-Melanocyte-stimulating hormone (alpha-MSH, alpha-melanotropin) and agouti control the switch between eumelanin and pheomelanin synthesis in mammalian melanocytes. Here we investigated interactions between alpha-MSH, agouti protein, cAMP elevating agents and phorbol ester on mouse B16 melanoma cells. Agouti (Kd 3.7 nmol/l) and alpha-MSH (Kd 2.3 nmol/l) had similar affinities to the MC1 melanocortin receptor. Both alpha-MSH and agouti induced MC1 receptor down-regulation. Agouti antagonized melanogenesis induced by alpha-MSH, forskolin, cholera toxin (CT), and pertussis toxin (PT). It also reduced the constitutive melanin formation of long-term cultures. Cell proliferation was inhibited by agouti (43% at 100 nM). This effect was reversed by alpha-MSH, forskolin, or CT. B16-G4F cells, a cell variant that lacks the MC1 receptor, did not respond to agouti. From these results we conclude that agouti shows the characteristics of an inverse agonist acting through the MC1 receptor.
An analogue of human melanin-concentrating hormone (MCH) suitable for radioiodination was designed in which Tyr13 and Val19 of the natural peptide were replaced by phenylalanyl and tyrosyl residues: [Phe13, Tyr19]-MCH. The peptide was synthesized by the continuous-flow solid-phase methodology using Fmoc-strategy and polyhipe PA 500 and PEG-PS resins. The linear MCH peptides with either acetamidomethyl-protected or free cysteinyl residues were purified to homogeneity and cyclized by iodine oxidation, yielding the final product with the correct molecular weight of 2434.61. Radioiodination of the C-terminal tyrosine was carried out enzymatically using solid-phase bound glucose oxidase/lactoperoxidase, followed by purification on a reversed-phase mini-column and by high-pressure liquid chromatography. The resulting [125I]-[Phe13, Tyr19]-MCH tracer was the first radiolabelled MCH peptide suitable for radioreceptor assay: saturation binding analysis using mouse G4F-7 melanoma cells demonstrated the presence of 1090 MCH receptors per cell. The dissociation constant (KD) was 1.18 x 10(-10) M, indicating high-affinity MCH receptors on these cells. MCH receptors were also found in other cell lines such as mouse B16-F1 and G4F and human RE melanoma cells as well as in PC12 and COS-7 cells. Competition binding analyses with a number of other peptides such as alpha-MSH, neuropeptide Y, substance P and pituitary adenylate cyclase activating peptide, demonstrated that the binding to the MCH receptor is specific. Atrial natriuretic factor was found to be a weak competitor of MCH, indicating topological similarities between MCH and ANF when interacting with MCH receptors.
Melanin-concentrating hormone (MCH) is a neuropeptide occurring in the brain of all vertebrate species. In chromatophores of teleost fishes it induces pigment granule aggregation. In mammals, however, its physiological function is not yet clear. Attempts to identify the site(s) of its action by binding analysis failed because radioiodinated MCH with the natural sequence was devoid of biological activity. We have now synthesized an analogue of rat/human MCH, [Pra4,8,12,19]-MCH, containing four L-propargylglycine (Pra) residues in positions 4, 8, 12, and 19 for catalytic tritiation to norvaline ([3H4]Nva) residues, each of which containing four tritium atoms. The resulting [3H]-MCH ([(3H4)Nva4,8,12,19]-MCH) had a specific radioactivity of approx. 12,200 GBq/mmol (330 Ci/mmol) and retained a biological activity of 10% as compared to rat/human MCH when tested in the carp scale assay. A series of qualitative binding studies performed with rat crude membranes from brain and peripheal tissues as well as with rat brain synaptosomes using the [3H]-MCH radioligand provided the first evidence for the presence of MCH receptors in mammalian tissues. The data showed that specific binding is present in the hypothalamus, hippocampus and in the adrenal gland while none was detected in the brain cortex or spleen. Owing to the tendency of [3H]-MCH to non-specific binding to tissue, glass and plastic surfaces, a saturation binding analysis with this radioligand was not possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.