MEG3 is a maternally expressed imprinted gene suggested to function as a non-coding RNA. Our previous studies suggest that MEG3 has a function of tumor suppression. The tumor suppressor p53 plays a central role in tumor suppression and mediates the functions of many other tumor suppressors. Therefore, we hypothesized that MEG3 functions through activation of p53. We found that transfection of expression constructs for MEG3 and its isoforms results in a significant increase in p53 protein levels and dramatically stimulates p53-dependent transcription from a p53-responsive promoter. Using this as the functional assay, we demonstrated that the open reading frames encoded by MEG3 transcripts are not required for MEG3 function, and the folding of MEG3 RNA is critical to its function, supporting the concept that MEG3 functions as a non-coding RNA. We further found that MEG3 stimulates expression of the growth differentiation factor 15 (GDF15) by enhancing p53 binding to the GDF15 gene promoter. Interestingly, MEG3 does not stimulate p21 CIP1 expression, suggesting that MEG3 can regulate the specificity of p53 transcriptional activation. p53 degradation is mainly mediated by the mouse double minute 2 homolog (MDM2). We found that MDM2 levels were down-regulated in cells transfected with MEG3, suggesting that MDM2 suppression contributes at least in part to p53 accumulation induced by MEG3. Finally, we found that MEG3 is able to inhibit cell proliferation in the absence of p53. These data suggest that MEG3 non-coding RNA may function as a tumor suppressor, whose action is mediated by both p53-dependent and p53-independent pathways.
Meningiomas are common tumors, representing 15% to 25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. The chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore, it has been proposed that an as yet unidentified tumor suppressor is present at this locus. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 which encodes a noncoding RNA with an antiproliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by ∼60% in bromodeoxyuridine incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by ∼80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that
Corticotroph tumors express multiple SSTR subtypes. SOM230 significantly suppressed cell proliferation and ACTH secretion in primary cultures of human corticotroph tumors. These in vitro results support the hypothesis that SOM230 may have a role in the medical therapy of corticotroph tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.