Ecologically dominant species are primary determinants of ecosystem function, especially in grassy ecosystems, but the history and biology of grassy ecosystems in Madagascar are poorly understood compared to those of Africa. Loudetia simplex is a C4 perennial grass that is adapted to fire and common to dominant across Africa. It is also widespread across central Madagascar in what are often thought to be human-derived grasslands, leading us to question how recently L. simplex arrived and how it spread across Madagascar. To address this, we collected population genetic data for 11 nuclear and 11 plastid microsatellite loci, newly developed for this study, for > 200 accessions from 78 populations of L. simplex, primarily from Madagascar and South Africa. Malagasy and African populations are genetically differentiated and harbour distinct plastid lineages. We demonstrate distinct geographically clustered diploid, tetraploid and hexaploid groups. The Malagasy hexaploid populations cluster into northern and southern types. In South Africa, diploid populations in the Drakensberg are distinct from tetraploid populations in north-eastern South Africa. Different genetic clusters are associated with significantly different precipitation and temperature. We conclude that L. simplex is native to both Madagascar and South Africa, probably with a single colonization event from Africa to Madagascar followed by pre-human diversification of L. simplex populations in Madagascar.
Aim: We investigated the phylogeographical history of a clonal-sexual orchid, to test the hypothesis that current patterns of genetic diversity and differentiation retain the traces of climatic fluctuations and of the species reproductive system. Location: Europe, Siberia and Russian Far East.Taxon: Cypripedium calceolus L. (Orchidaceae).Methods: Samples (>900, from 56 locations) were genotyped at 11 nuclear microsatellite loci and plastid sequences were obtained for a subset of them. Analysis of genetic structure and approximate Bayesian computations were performed.Species distribution modelling was used to explore the effects of past climatic fluctuations on the species range. Results: Analysis of genetic diversity reveals high heterozygosity and allele diversity, with no geographical trend. Three genetic clusters are identified with extant gene pools derived from ancestral demes in glacial refugia. Siberian populations exhibit different plastid haplotypes, supporting an early divergence for the Asian gene pool. Demographic results based on genetic data are compatible with an admixture event explaining differentiation in Estonia and Romania and they are consistent with past climatic dynamics inferred through species distribution modelling. Current population differentiation does not follow isolation by distance model and is compatible with a model of isolation by colonization. Main conclusions: The genetic differentiation observed today in C. calceolus preserves the signature of climatic fluctuations in the historical distribution range of the species. Our findings support the central role of clonal reproduction in the reducing loss of diversity through genetic drift. The dynamics of the clonal-sexual reproduction are responsible for the persistence of ancestral variation and stability during glacial periods and post-glacial expansion.
Coffea arabica (Arabica) and C. canephora (robusta) almost entirely dominate global coffee production. Various challenges at the production (farm) level, including the increasing prevalence and severity of disease and pests and climate change, indicate that the coffee crop portfolio needs to be substantially diversified in order to ensure resilience and sustainability. In this study, we use a multidisciplinary approach (herbarium and literature review, fieldwork and DNA sequencing) to elucidate the identity, whereabouts, and potential attributes, of two poorly known coffee crop species: C. affinis and C. stenophylla. We show that despite widespread (albeit small-scale) use as a coffee crop species across Upper West Africa and further afield more than 100 years ago, these species are now extremely rare in the wild and are not being farmed. Fieldwork enabled us to rediscover C. stenophylla in Sierra Leone, which previously had not been recorded in the wild there since 1954. We confirm that C. stenophylla is an indigenous species in Guinea, Sierra Leone, and Ivory Coast. Coffea affinis was discovered in the wild in Sierra Leone for the first time, having previously been found only in Guinea and Ivory Coast. Prior to our rediscovery, C. affinis was last seen in the wild in 1941, although sampling of an unidentified herbarium specimen reveals that it was collected in Guinea-Conakry in 2015. DNA sequencing using plastid and ITS markers was used to: (1) confirm the identity of museum and field collected samples of C. stenophylla; (2) identify new accessions of C. affinis;(3) refute hybrid status for C. affinis; (4) identify accessions confused with C. affinis;(5) show that C. affinis and C. stenophylla are closely related, and possibly a single species; (6) substantiate the hybrid C. stenophylla × C. liberica; (7) demonstrate the use of plastid and nuclear markers as a simple means of identifying F1 and earlygeneration interspecific hybrids in Coffea; (8) infer that C. liberica is not monophyletic; and (9) show that hybridization is possible across all the major groups of key Africa Coffea species (Coffee Crop Wild Relative Priority Groups I and II). Coffea affinis and C. stenophylla may possess useful traits for coffee crop plant development, including taste differentiation, disease resistance, and climate resilience. These attributes would be best accessed via breeding programs, although the species may have niche-market potential via minimal domestication.
Climate change poses a considerable challenge for coffee farming, due to increasing temperatures, worsening weather perturbations, and shifts in the quantity and timing of precipitation. Of the actions required for ensuring climate resilience for coffee, changing the crop itself is paramount, and this may have to include using alternative coffee crop species. In this study we use a multidisciplinary approach to elucidate the identity, distribution, and attributes, of two minor coffee crop species from East Africa: Coffea racemosa and C. zanguebariae. Using DNA sequencing and morphology, we elucidate their phylogenetic relationships and confirm that they represent two distinct but closely related species. Climate profiling is used to understand their basic climatic requirements, which are compared to those of Arabica (C. arabica) and robusta (C. canephora) coffee. Basic agronomic data (including yield) and sensory information are provided and evaluated. Coffea racemosa and C. zanguebariae possess useful traits for coffee crop plant development, particularly heat tolerance, low precipitation requirement, high precipitation seasonality (dry season tolerance) and rapid fruit development (c. 4 months flowering to mature fruit). These attributes would be best accessed via breeding programs, although these species also have niche-market potential, particularly after further pre-farm selection and post-harvest optimization.
The molecular analysis provides novel insights into the evolutionary history of C. esculentus. The results have various taxonomic and phylogenetic implications, including a hypothesis on the origin and phylogeography of this species, which probably originated in the late Cenozoic in Africa, and reached the Americas repeatedly, independently of Columbian exchanges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.