Composites based on virgin and recycled polypropylene (PP and rPP) reinforced with 15 wt% sisal fibers, with and without alkali treatment, were prepared by compression molding in a mat composed of a three-layer sandwich structure. The sisal was characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The composites were characterized according to physical and mechanical properties. Additionally, a factorial experimental design was used to statistically evaluate the mechanical properties of the composite. The FTIR and XRD indicated the partial removal of amorphous materials from the surface of the sisal after alkali treatment. The composites’ density results varied from 0.892 to 0.927 g·cm−3, which was in the desirable range for producing lightweight automotive components. A slight decrease in the hardness of the pure rPP and rPP composites in relation to the PP was observed. The water absorption was higher in rPP composites, regardless of the chemical treatment. Moreover, the impact resistance of PP and its composites was higher than the values for rPP. Statistical analysis showed that the alkali treatment was a significant factor for the hardness of the rPP and PP composites, and that the addition of the sisal layer was relevant to improve the impact resistance of the composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.