Two membrane-bound, reductive dehalogenases that constitute a novel pathway for complete dechlorination of tetrachloroethene (perchloroethylene [PCE]) to ethene were partially purified from an anaerobic microbial enrichment culture containing Dehalococcoides ethenogenes 195. When titanium(III) citrate and methyl viologen were used as reductants, PCE-reductive dehalogenase (PCE-RDase) (51 kDa) dechlorinated PCE to trichloroethene (TCE) at a rate of 20 μmol/min/mg of protein. TCE-reductive dehalogenase (TCE-RDase) (61 kDa) dechlorinated TCE to ethene. TCE,cis-1,2-dichloroethene, and 1,1-dichloroethene were dechlorinated at similar rates, 8 to 12 μmol/min/mg of protein. Vinyl chloride and trans-1,2-dichloroethene were degraded at rates which were approximately 2 orders of magnitude lower. The light-reversible inhibition of TCE-RDase by iodopropane and the light-reversible inhibition of PCE-RDase by iodoethane suggest that both of these dehalogenases contain Co(I) corrinoid cofactors. Isolation and characterization of these novel bacterial enzymes provided further insight into the catalytic mechanisms of biological reductive dehalogenation.
A gene (pueA, polyurethane esterase A) encoding an extracellular polyurethanase (PueA) was cloned from Pseudomonas chlororaphis into Escherichia coli. The enzyme secreted from E. coli showed esterase activity when assayed with p-nitrophenyl acetate. Subcloning of a 3. 2-kb SalI-EcoRI fragment into a T7 RNA polymerase expression vector (pT7-6) produced a (35)S-labeled protein of 65 kDa. Nucleotide sequencing of pueA showed an open reading frame encoding a 65-kDa protein of 617 amino acid residues, with the serine hydrolase consensus sequence GXSXG. PueA was over-expressed using the pT7-6 vector transformed into E. coli BL21(DE3) and was purified in one step using Sephadex G-75.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.