River networks modify material transfer from land to ocean. Understanding the factors regulating this function for different gaseous, dissolved, and particulate constituents is critical to quantify the local and global effects of climate and land use change. We propose the River Network Saturation (RNS) concept as a generalization of how river network regulation of material fluxes declines with increasing flows due to imbalances between supply and demand at network scales. River networks have a tendency to become saturated (supply) demand) under higher flow conditions because supplies increase faster than sink processes. However, the flow thresholds under which saturation occurs depends on a variety of factors, including the inherent process rate for a given constituent and the abundance of lentic waters such as lakes, ponds, reservoirs, and fluvial wetlands within the river network. As supply increases, saturation at network scales is initially limited by previously unmet demand in downstream aquatic ecosystems. The RNS concept describes a general tendency of river network function that can be
The Dunning rat prostatic carcinoma is a model system where cell motility closely correlates with the metastatic phenotype. We have identified a novel gene, upregulated in the highly motile and metastatic Dunning cancer cell lines, that represents a new member of the thymosin-beta family, thymosin beta 15. Transfection of antisense thymosin beta 15 constructs into rat prostatic carcinoma cells demonstrates that this molecule positively regulates cell motility, a critical component of the metastatic pathway. Thymosin beta 15 levels are elevated in human prostate cancer and correlate positively with the Gleason tumor grade. Thymosin beta 15 may represent a potential new biochemical marker for human prostate cancer progression.
[1] Transient storage (TS) zones are important areas of dissolved inorganic nitrogen (DIN) processing in rivers. We assessed sensitivities regarding the relative impact that the main channel (MC), surface TS (STS), and hyporheic TS (HTS) have on network denitrification using a model applied to the Ipswich River in Massachusetts, United States. STS and HTS connectivity and size were parameterized using the results of in situ solute tracer studies in first-through fifth-order reaches. DIN removal was simulated in all compartments for every river grid cell using reactivity derived from Lotic Intersite Nitrogen Experiment (LINX2) studies, hydraulic characteristics, and simulated discharge. Model results suggest that although MC-to-STS connectivity is greater than MC-to-HTS connectivity at the reach scale, at basin scales, there is a high probability of water entering the HTS at some point along its flow path through the river network. Assuming our best empirical estimates of hydraulic parameters and reactivity, the MC, HTS, and STS removed approximately 38%, 21%, and 14% of total DIN inputs during a typical base flow period, respectively. There is considerable uncertainty in many of the parameters, particularly the estimates of reaction rates in the different compartments. Using sensitivity analyses, we found that the size of TS is more important for DIN removal processes than its connectivity with the MC when reactivity is low to moderate, whereas TS connectivity is more important when reaction rates are rapid. Our work suggests a network perspective is needed to understand how connectivity, residence times, and reactivity interact to influence DIN processing in hierarchical river systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.